Графики трёх линейных функций y=ax+dy=ax+d, y=bx+ey=bx+e и y=cx+fy=cx+f, схематично изображённые на рисунке, разбивают плоскость на 66 областей, пронумерованных цифрами от 11 до 66. Какие области пересечёт график функции y=(a+b+c3)x+(d+e+f3)y=(a+b+c3)x+(d+e+f3)? (Прямая пересекает область, если проходит через хотя бы одну её точку, не лежащую на границе области.)
За час, пока не двигалась лодка, плот по течению 2км.
Плот до встречи ещё шёл 2 часа и км. Всего он км)
30-6 = 24(км до встречи моторная лодка.
Лодка шла 2 часа и км, следовательно, она двигалась со скоростью 24:2 = 12(км/ч).
Это скорость лодки при движении против течения
Скорость течения 2 км/ч. Следовательно, собственная скорость лодки равна 12+2 = 14 (км/ч)
А теперь с системой.
Пусть С - расстояние пройденное лодкой до встречи за 2 часа, а х - собственная скорость лодки, тогда х - 2 - скорость лодки при движении против течения, и 1-е уравнение:
С = 2·(х-2) (1)
Плот проплыл по течению со скорость 2 км/ч три часа до встречи и преодолел расстояние 30 - С. 2-е уравнение:
Без всяких уравнений:
За час, пока не двигалась лодка, плот по течению 2км.
Плот до встречи ещё шёл 2 часа и км. Всего он км)
30-6 = 24(км до встречи моторная лодка.
Лодка шла 2 часа и км, следовательно, она двигалась со скоростью 24:2 = 12(км/ч).
Это скорость лодки при движении против течения
Скорость течения 2 км/ч. Следовательно, собственная скорость лодки равна 12+2 = 14 (км/ч)
А теперь с системой.
Пусть С - расстояние пройденное лодкой до встречи за 2 часа, а х - собственная скорость лодки, тогда х - 2 - скорость лодки при движении против течения, и 1-е уравнение:
С = 2·(х-2) (1)
Плот проплыл по течению со скорость 2 км/ч три часа до встречи и преодолел расстояние 30 - С. 2-е уравнение:
30 - С = 2·(2 + 1)
или
30 - С = 6 (2)
Из (2) С = 30-6 = 24(км)
Подставим в (1)
24 = 2х - 4
2х = 28
х = 14(км/ч)
Зачем уравнения, когда можно и без них? :)
а²-3а+2=0
D=9-8=1, D>0
a₁=3+1/2=2, a₂=3-1/2=1
a²-5a+6=0
D=25-24=1, D>0
a₃=5+1/2=3, a₄=5-1/2=2
ответ: а-1/а-3
2)5а²-9а-2/а²-3а+2=(a-2)(a+0,2)/(a-2)(a-1)=a+0,2/a-1
5а²-9а-2=0
D=81+40=121, D>0
a₁=9+11/10=2, a₂=9-11/10=-0,2
a²-3a+2=0
D=9-8=1, D>0
a₃=3+1/2=2, a₄=3-1/2=1
ответ: а+0,2/а-1
3) 6х²+х-2/3х²-4х-4=(х-1/2)(х+2/3)/(х-2)(х+2/3)=х-1/2/х-2
6х²+х-2=0
D=1+48=49, D>0
x₁=-1+7/12=1/2
x₂=-1-7/12=-8/12=-2/3
3x²-4x-4=0
D=16+48=64, D>0
x₃=4+8/6=2, x₄=4-8/6=-4/6=-2/3
ответ: х-1/2/х-2