Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.
Объём шара равен 4/3πR³. Обозначим ребро куба за 2x, тогда диаметр меньшего шара также равен 2x (меньший шар касается центров всех 6 граней куба, а расстояние между центрами 2 противоположных граней равно ребру куба), а его радиус равен x. Радиус шара, описанного около куба, равен расстоянию от центра куба до его вершины. Это расстояние равно половине большой диагонали куба, а диагональ равна √3*2x, тогда радиус большего шара равен √3*x. Объём большего шара равен 4/3π*3√3*x³, а объём меньшего равен 4/3π*x³. Разделив первое число на второе, получим ответ - 3√3.
24А = 15(А-3)
24А = 15А-45
А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120.
Следовательно, всего книг 120 * 2 = 240.
ответ: 240 книг.