У+ у – х = 70, т. е. 2у – х = 70. отсюда х = 2у – 70. когда мне было столько же лет, сколько вам сейчас, т. е. когда мне было у – х лет, вам было на х лет меньше (т. к. вы моложе меня на х лет) , т. е. у – х – х = у – 2х. мне сейчас в 2 раза больше, т. е. 2*(у – 2х) лет. с другой стороны мне сейчас у лет. получаем уравнение у = 2*(у – 2х) . у = 2у – 4х. у = 4х. подставим сюда х = 2у – 70. у = 4*(2у – 70). у = 8у – 280. 7у = 280. у = 40. ответ: 40 лет. проверка х = 2у – 70 = 2*40 – 70 = 10. вам сейчас 30 лет. 40 + 30 = 70.
Исследование точек экстремума функции проведём по первой производной функции. Первая производная равна y'(x)=3*x²-6*x, её значения равны нулю х1=0 (производная меняет знак с + на минус, так что эта точка - точка локального максимума) х2=2 (производная меняет знак с минуса на =, так что эта точка - точка локального минимума). По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.