ответ:
y = x^4 – 2x^2 – 8.
найдем координаты точек пересечения графика функции с осью абсцисс (х).
x^4 – 2x^2 – 8 = 0.
произведем замену: а = x^2, a^2 = x^4.
a^2 – 2а – 8 = 0.
дискриминант:
d = 2^2 – 4*(-8) = 4 + 32 = 36.
a1 = (2 + √36)/2 = (2 + 6)/2 = 8/2 = 4.
a2 = (2 - √36)/2 = (2 – 6)/2 = -4/2 = -2 – данное значения не подходит, потому что x^2 не может быть ниже нуля.
x^2 = 4 ⇒ х1 = 2, х2 = -2.
уравнение касательной:
у = f(x0) + f ‘(x0)(x – x0).
1. x0 = x1 = 2.
f(x0) = 2^4 – 2*(2^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*8 – 4*2 = 32 – 8 = 24.
у1 = 24(x – 2) = 24х – 48.
2. x0 = x1 = - 2.
f(x0) = (-2)^4 – 2*((-2)^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x0) = 4*(-8) – 4*(-2) = -32 + 8 = -24.
у2 = -24(x + 2) = -24х - 48.
3. чтобы найти точку пересечения касательных у1 = 24х – 48 и у2 = -24х - 48, приравняем их правые части и найдем координату х:
24х – 48 = -24х - 48;
24х + 24х = - 48 + 48;
48х = 0;
х = 0/48;
х = 0.
у1 = 24*0 – 48 = 0 – 48 = -48.
ответ: (0; -48).
ответ:
y = x^4 – 2x^2 – 8.
найдем координаты точек пересечения графика функции с осью абсцисс (х).
x^4 – 2x^2 – 8 = 0.
произведем замену: а = x^2, a^2 = x^4.
a^2 – 2а – 8 = 0.
дискриминант:
d = 2^2 – 4*(-8) = 4 + 32 = 36.
a1 = (2 + √36)/2 = (2 + 6)/2 = 8/2 = 4.
a2 = (2 - √36)/2 = (2 – 6)/2 = -4/2 = -2 – данное значения не подходит, потому что x^2 не может быть ниже нуля.
x^2 = 4 ⇒ х1 = 2, х2 = -2.
уравнение касательной:
у = f(x0) + f ‘(x0)(x – x0).
1. x0 = x1 = 2.
f(x0) = 2^4 – 2*(2^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*8 – 4*2 = 32 – 8 = 24.
уравнение касательной:
у1 = 24(x – 2) = 24х – 48.
2. x0 = x1 = - 2.
f(x0) = (-2)^4 – 2*((-2)^2) – 8 = 16 – 8 – 8 = 0.
f ‘(x) = 4x^3 – 4x.
f ‘(x0) = 4*(-8) – 4*(-2) = -32 + 8 = -24.
уравнение касательной:
у2 = -24(x + 2) = -24х - 48.
3. чтобы найти точку пересечения касательных у1 = 24х – 48 и у2 = -24х - 48, приравняем их правые части и найдем координату х:
24х – 48 = -24х - 48;
24х + 24х = - 48 + 48;
48х = 0;
х = 0/48;
х = 0.
у1 = 24*0 – 48 = 0 – 48 = -48.
ответ: (0; -48).
sin2x -cos²x =0 ;
2sinx*cosx -cos²x =0 ;
cosx(2sinx-cosx) =0 ;
[cosx =0 ; 2sinx-cosx=0⇒x=π/2+πn , x =arcctq2 ; n∈Z.
2)
cos2x +cos²x =0 ;
cos²x - sin²x+cos²x =0 ;
sin²x =0 ⇒sinx =0 ;
x =πn , n∈Z.
3).
2cos⁴x+3cos²x-2=0 ;
* * * замена переменной t = cos²x ; 0≤ t ≤ 1 * * *
2t²+3t-2=0 ; * * * D =3² -4*2*(-2) =25 =5² * * *
t₁ = (-3 -5)/4 = -2 не удов. 0≤ t ≤ 1.
t₂ =(-3+5)/4 =1/2⇒cos²x =1/2⇔(1+cos2x)/2 =1/2⇔cos2x=0 ⇒
2x =π/2+ πn , n∈Z ;
x = π/4+ (π/2)*n , n∈Z.
4).
2cos²x+5sinx-4=0 ;
2(1-sin²x)+5sinx-4=0 ;
2sin²x-5sinx+2=0 ; * * * D =5² -4*2*2 =25 =3² * * *
sinx = (5+3)/4 =2 не умеет решения ;
sinx = (5-3)/4 =1/2 ⇒ x =(-1)^n *(π/6) + πn , n∈Z .
5). 2cos^2x(3p/2-x)-5sin(p/2-x)-4=0 ;
2cos²(3π/2-x)-5sin(π/2-x)-4=0 ;
2sin²x -5cosx -4 = 0 ;
2(1-cos²x) -5cosx -4 = 0 ;
2cos²x +5cosx +2 = 0 ; * * *D =5² -4*2*2 =25 =3² * * *
cos²x +(2+1/2)cosx +1 = 0 ⇒[cosx =2 ; cosx =1/2 .
cosx =1/2 ;
x =±π/3 +2πn , n∈Z .