Имеются два сосуда. Первый содержит 50 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 14% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 23% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
(2а)²+(2а+2)²+(2а+4)²=2360;
4а²+4a²+8a+4+4a²+16a+16=2360;
12a²+24a+20=2360;
12a²+24a-2340=0; | : 12
a²+2a-195=0;
D=4+780=784;
a1=(-2-28)/2=-30/2=-15;
a2=(-2+28)/2=26/2=13.
По условию задачи числа натуральные, значит а=13.
Таким образом, 2*13=26 - первое число, 28 - второе число, 30 - третье число.
ответ: 26; 28; 30.
2) Пусть длина прямоугольника равна а, тогда 0,25а - ширина. По условию задачи площадь прямоугольника равна 512 см². Составляем уравнение:
а*0,25а=512;
0,25а²=512;
а²=512/0,25=2048;
а=32√2.
Длина прямоугольника равна 32√2 см, ширина равна 32√2*0,25=8√2 см.
Периметр прямоугольника равен:
Р=2(а+b)=2*(32√2+8√2)=2*40√2=80√2 (см).
ответ: 80√2 см.
3) Пусть х - одно число, тогда (х-9) - другое число. По условию задачи их произведение равно 1386. Составляем уравнение:
х(х-9)=1386;
x²-9x-1386=0;
D=81+5544=5625;
x1=(9-75)/2=-66/2=-33;
x2=(9+75)/2=84/2=42.
По условию задачи произведение чисел - положительное число, значит первое число равно 42, а второе 42-9=33.
ответ: 42; 33.
x - y = 5 выразим х=5+у подставим в 1 уравн . (5+у)²+у²=37
25+10у+у²+у²-37=0 2у²+10у-12=0 |:2 у²+5у-6=0 Д=25-4*1*(-6)=25+24=49 √д=√49=7 нашли дискриминант и решаем кв.уравнение дальше,находим
у1=(-5+7)\2=2\2=1 у2=(-5-7)\2=-12\2=-6.Подставим в х=5+у (это во 2 строчке мы выразили х через у) вместо У его значение и найдем х1=5+у1=5+1=6
х2=5+у2=5+(-6)=-1 отв.(-1;-6) и (1;6)
m²+16n²=16
m+2=2n выразим m=2n-2 и подставим в 1 уравн. (2n-2)²+16n²=16
4n²-8n+4+16n²-16=0 20n²-8n-12=0 |:4 5n² -2n-3=0 D=2²-4*5*(-3)=64
√D=√64=8 n1=(2-8)\2*5=-6\10=-3\5=-0,6 n2=(2+8)\2*5=10\10=1
подставим в m1=2n1-2=2*(-0,6)-2=-1,2-2=-3,2 m2=2n2-2 =2*1-2=0
отв.m1=-3,2 n1=-0,6 m2=0 n2=1