Проведём через точку (1; 4) прямую, пересекающую оси Ох и Оу в положительных значениях. Координата точки пересечения с осью Ох равна х, а с осью Оу равна у.
Длину по у можно выразить через х по пропорции:
4/(х - 1) = у/х, отсюда у = 4х/(х - 1).
Сумма длин х + у = х + (4х/(х - 1)) = (х² - х + 4х)/(х - 1) = (х² + 3х)/(х - 1).
Производная этой функции равна y' = (x² - 2x - 3)/(x - 1)².
Для нахождения минимума приравняем её нулю (достаточно числитель): x² - 2x - 3 = 0. Д = 4 + 4*3 = 16. х = (2+-4)/2 = 3 и -1 (отрицательное значение не принимаем).
Определим знаки производной (по числителю - знаменатель положителен) левее и правее найденной критической точки.
х = 2 3 4
y' = -3 0 5 Переход от + к - это минимум.
Находим уравнение прямой через 2 точки: (1; 4) и (3; 0)
(х - 1)/2 = (у - 4)/-4. Сократим знаменатели на 2.
(х - 1)/1 = (у - 4)/-2. это каноническое уравнение прямой.
Начнём "угадывать" ответ. 1. Если в числе увеличится только последняя цифра, сумма увеличится на 1 (очевидно) 2. Если только изменятся только две цифры (случай ...a99 -> ...(a+1)00) изменение суммы цифр на 9 + 9 - 1 = 18 - 1 = 17 3. Если три цифры (случай ...а999 -> ...(a+1)000) изменение на 3*9 - 1 4. Если k цифр: изменение на k*9 - 1 Итак, сумма цифр меняется либо на 1, либо на число, дающее в остатке при делении на 9 число -1 (или 8, что то же самое) ответ: Д.
Пример: этими числами могут быть 99...9 (224 девятки) и 100...0 (224 нуля).
Проведём через точку (1; 4) прямую, пересекающую оси Ох и Оу в положительных значениях. Координата точки пересечения с осью Ох равна х, а с осью Оу равна у.
Длину по у можно выразить через х по пропорции:
4/(х - 1) = у/х, отсюда у = 4х/(х - 1).
Сумма длин х + у = х + (4х/(х - 1)) = (х² - х + 4х)/(х - 1) = (х² + 3х)/(х - 1).
Производная этой функции равна y' = (x² - 2x - 3)/(x - 1)².
Для нахождения минимума приравняем её нулю (достаточно числитель): x² - 2x - 3 = 0. Д = 4 + 4*3 = 16. х = (2+-4)/2 = 3 и -1 (отрицательное значение не принимаем).
Определим знаки производной (по числителю - знаменатель положителен) левее и правее найденной критической точки.
х = 2 3 4
y' = -3 0 5 Переход от + к - это минимум.
Находим уравнение прямой через 2 точки: (1; 4) и (3; 0)
(х - 1)/2 = (у - 4)/-4. Сократим знаменатели на 2.
(х - 1)/1 = (у - 4)/-2. это каноническое уравнение прямой.
-2х + 2 = у - 4.
у + 2х - 6 = 0 это общее уравнение прямой,
у = -2х + 6 оно же с угловым коэффициентом.
1. Если в числе увеличится только последняя цифра, сумма увеличится на 1 (очевидно)
2. Если только изменятся только две цифры (случай ...a99 -> ...(a+1)00) изменение суммы цифр на 9 + 9 - 1 = 18 - 1 = 17
3. Если три цифры (случай ...а999 -> ...(a+1)000) изменение на 3*9 - 1
4. Если k цифр: изменение на k*9 - 1
Итак, сумма цифр меняется либо на 1, либо на число, дающее в остатке при делении на 9 число -1 (или 8, что то же самое)
ответ: Д.
Пример: этими числами могут быть 99...9 (224 девятки) и 100...0 (224 нуля).