Общий вид квадратного уравнения:
ax² + bx + c = 0
через D₁).
3x² + 22x - 16 = 0
a = 3, b = 22, c = - 16,
k = b/2 =
= 22/2 = 11
D₁ = k² - ac = 11² - 3 · ( -16 )
= 121 + 48 = 169 = 13²
x₁,₂ = ( -k ± √D₁)/a = ( -11 ± √13² )/3 =
= ( -11 ± 13 )/3
x₁ = ( -11 - 13 )/3 = - 24/3 = -8
x₂ = ( -11 + 13 )/3 = 2/3
через D).
a = 3, b = 22 , c = - 16
D = b² - 4ac = 22² - 4 · 3 · ( -16 ) =
= 484 + 192 = 676 = 26²
x₁,₂ = ( -b ± √D )/2a = ( -22 ± √26² )/2 · 3 =
= ( -22 ± 26 )/6
x₁ = ( -22 - 26 )/6 = - 48/6 = -8
x₂ = ( -22 + 26)/6 = 4/6 = 2/3
ответ: -8; 2/3.
216x^3 - 1 = (6x)^3 - 1^3 = (6x-1)(36x^2+6x+1)
100b^2 - 140bx^2 + 49x^4 = (10b - 7x^2)^2=(10b-7x^2)(10b-7x^2)
125b^3 + 27 = (5b + 3)(25b^2 - 15b + 9)
(5a - 1/5)^2 = 25a^2 - 2a + 1/25)
(3a - 5b^2)(9a^2 + 15ab^2 + 25b^4) = (3a)^3 - (5b^2)^3 = 27a^3 - 125b^6
(0,8x+ 5)(5 - 0,8x) = (5 + 0,8x)(5 - 0,8x) = 5^2 - (0,8x)^2 = 25 - 0,64x^2
(7x+ 0,4)^2 = 49x^2 + 5,6x + 0,16
(6y + 1)(36y^2 - 6y + 1) = (6y)^3 + 1^3 = 216y^3 + 1
25x^2 + 60xy + 36y^2 = (5x + 6y)^2 = (5x + 6y)(5x + 6y).
Общий вид квадратного уравнения:
ax² + bx + c = 0
через D₁).
3x² + 22x - 16 = 0
a = 3, b = 22, c = - 16,
k = b/2 =
= 22/2 = 11
D₁ = k² - ac = 11² - 3 · ( -16 )
= 121 + 48 = 169 = 13²
x₁,₂ = ( -k ± √D₁)/a = ( -11 ± √13² )/3 =
= ( -11 ± 13 )/3
x₁ = ( -11 - 13 )/3 = - 24/3 = -8
x₂ = ( -11 + 13 )/3 = 2/3
через D).
3x² + 22x - 16 = 0
a = 3, b = 22 , c = - 16
D = b² - 4ac = 22² - 4 · 3 · ( -16 ) =
= 484 + 192 = 676 = 26²
x₁,₂ = ( -b ± √D )/2a = ( -22 ± √26² )/2 · 3 =
= ( -22 ± 26 )/6
x₁ = ( -22 - 26 )/6 = - 48/6 = -8
x₂ = ( -22 + 26)/6 = 4/6 = 2/3
ответ: -8; 2/3.