В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Raydi1337
Raydi1337
25.11.2021 21:08 •  Алгебра

Используя метод доказательств от противного, докажите:
число 3 не может быть корнем уравнения ax³ + bx² + x + 9 = 0 при любых натуральных a и b​

Показать ответ
Ответ:
София6451
София6451
10.10.2020 11:28

Допустим, число три есть корень уравнения ax³ + bx² + x + 9 = 0, тогда он удовлетворяет этому уравнению и a3³ + b3² + 3 + 9 = 0.

Но левая часть - сумма натуральных чисел 27a + 9b +12, и быть равным нулю она не может. Пришли в противоречие с этим фактом. почему? ПОтому что предположили, что число три является корнем исходного уравнения. Значит то, что предполагали, неверно, а верно то, что надо доказать. т.е. три не есть корень исходного уравнения.

Требуемое утверждение доказано.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота