10 см - длина и 4 см - ширина прямоугольника
Объяснение:
Перевод: Периметр прямоугольника равен 28 см, а его площадь 40 см². Найти стороны прямоугольника.
Дано:
ABCD - прямоугольник
P(ABCD) = 28 см
S(ABCD) = 40 см²
Найти: стороны прямоугольника.
Решение.
Пусть сторонами прямоугольника будут a и b, для определённости, a - длина и b - ширина (см. рисунок). По определению прямоугольника: a≥b.
Периметр прямоугольника определяется по формуле
P(ABCD) = 2·(a + b),
а площадь - по формуле
S = a·b.
На основе данных получим следующую систему уравнений:
Сначала решаем второе квадратное уравнение системы:
(14 - b)·b = 40 ⇔ 14·b - b² = 40 ⇔ b² -14·b + 40=0
D=(-14)² - 4·1·40 = 196 - 160 = 36 = 6²:
b₁=(14-6)/(2·1)= 8/2=4;
b₂=(14+6)/(2·1)=20/2=10.
Тогда
Но, по определению прямоугольника: a≥b. И поэтому ответом будет пара 10 и 4.
Программа на Руби
for n in -10000..10000
for k in 0..1000
p [n,k] if 10*n + 5 == k*k
end
end
Вывод
[2, 5]
[22, 15]
[62, 25]
[122, 35]
[202, 45]
[302, 55]
[422, 65]
[562, 75]
[722, 85]
[902, 95]
[1102, 105]
[1322, 115]
[1562, 125]
[1822, 135]
[2102, 145]
[2402, 155]
[2722, 165]
[3062, 175]
[3422, 185]
[3802, 195]
[4202, 205]
[4622, 215]
[5062, 225]
[5522, 235]
[6002, 245]
[6502, 255]
[7022, 265]
[7562, 275]
[8122, 285]
[8702, 295]
[9302, 305]
[9922, 315]
т.е. подразумевается что есть и другие решения, если расширять диапазон
10 см - длина и 4 см - ширина прямоугольника
Объяснение:
Перевод: Периметр прямоугольника равен 28 см, а его площадь 40 см². Найти стороны прямоугольника.
Дано:
ABCD - прямоугольник
P(ABCD) = 28 см
S(ABCD) = 40 см²
Найти: стороны прямоугольника.
Решение.
Пусть сторонами прямоугольника будут a и b, для определённости, a - длина и b - ширина (см. рисунок). По определению прямоугольника: a≥b.
Периметр прямоугольника определяется по формуле
P(ABCD) = 2·(a + b),
а площадь - по формуле
S = a·b.
На основе данных получим следующую систему уравнений:
Сначала решаем второе квадратное уравнение системы:
(14 - b)·b = 40 ⇔ 14·b - b² = 40 ⇔ b² -14·b + 40=0
D=(-14)² - 4·1·40 = 196 - 160 = 36 = 6²:
b₁=(14-6)/(2·1)= 8/2=4;
b₂=(14+6)/(2·1)=20/2=10.
Тогда
Но, по определению прямоугольника: a≥b. И поэтому ответом будет пара 10 и 4.