Объяснение:
1. Запишите квадратное уравнение, у которого первый коэффициент равен -5, второй коэффициент равен 3. Свободный член равен нулю.
ax²+bx+c=0 - общий вид квадратного уравнения.
в нашем случае а=-5, b=3 с=0. Таким образом уравнение имеет вид:
-5x²+3x+0=0 и окончательно -5x²+x=0.
***
2. Запишите приведённое квадратное уравнение, у которого второй
коэффициент и свободный член равны -3.
Приведенное квадратное уравнение — это уравнение, где коэффициент, при одночлене высшей степени, равен единице.
То есть а=1. b=-3 и с =-3. Тогда уравнение принимает вид:
x²-3x-3=0.
3. Запишите неполное квадратное уравнение, у которого первый коэффициент равен -3, свободный член равен 5, и решите его.
a=-3: c=5. b =0;
-3x²+5=0;
-3x²=-5;
x²=5/3;
x=±√(5/3).
4. Запишите неполное квадратное уравнение, у которого первый коэффициент равен 5, второй коэффициент равен 7, и решите его.
a=5; b =7 c=0.
5x²+7x=0;
x(5x+7)=0;
Произведение равно нулю только тогда хотя бы один из множителей равен нулю:
x1=0;
---
5x+7=0;
5x=-7;
x=-7/5;
x2= - 1 2/5.
5. Решите уравнения:
1) х² = 6x;
x²-6x=0;
x(x-6)=0;
x-6=0;
x2=6.
2) х² + 7x - 3 = 7х +6; (+7х слева и +7х справа в сумме дают 0);
x²=9;
x1,2=±3.
3) 3х² + 9 = 12х +9; (+9 слева и +9 справа от знака равенства взаимно уничтожаются, так как в сумме дают 0);
3x²-12x=0;
3x(x-4)=0;
3x=0;
x-4=0;
x=4.
tg(4x) = -1/√3 = -√3/3
4x = -π/6 + πk, k∈Z
x = -π/24 + (πk/4), k∈Z
x∈[-π/2; π/2]
Найдем, при каких k корни уравнения будут принадлежать указанному в условии отрезку:
-π/2 ≤ -π/24 + (πk/4) ≤ π/2
-π/2 + π/24 ≤ πk/4 ≤ π/2 + π/24
-11π/24 ≤ πk/4 ≤ 13π/24
-11/6 ≤ k ≤ 13/6, k∈Z
k = -1, 0, 1, 2
Итого будет 4 корня.
k = -1, x1 = -π/24 - π/4 = (-π - 6π)/24 = -7π/24
k = 0, x2 = -π/24
k = 1, x3 = -π/24 + π/4 = (-π + 6π)/24 = 5π/24
k = 2, x4 = -π/24 + 2π/4 = (-π + 12π)/24 = 11π/4
ответ: -7π/24, -π/24, 5π/24, 11π/24
Объяснение:
1. Запишите квадратное уравнение, у которого первый коэффициент равен -5, второй коэффициент равен 3. Свободный член равен нулю.
ax²+bx+c=0 - общий вид квадратного уравнения.
в нашем случае а=-5, b=3 с=0. Таким образом уравнение имеет вид:
-5x²+3x+0=0 и окончательно -5x²+x=0.
***
2. Запишите приведённое квадратное уравнение, у которого второй
коэффициент и свободный член равны -3.
Приведенное квадратное уравнение — это уравнение, где коэффициент, при одночлене высшей степени, равен единице.
То есть а=1. b=-3 и с =-3. Тогда уравнение принимает вид:
x²-3x-3=0.
***
3. Запишите неполное квадратное уравнение, у которого первый коэффициент равен -3, свободный член равен 5, и решите его.
a=-3: c=5. b =0;
-3x²+5=0;
-3x²=-5;
x²=5/3;
x=±√(5/3).
***
4. Запишите неполное квадратное уравнение, у которого первый коэффициент равен 5, второй коэффициент равен 7, и решите его.
a=5; b =7 c=0.
5x²+7x=0;
x(5x+7)=0;
Произведение равно нулю только тогда хотя бы один из множителей равен нулю:
x1=0;
---
5x+7=0;
5x=-7;
x=-7/5;
x2= - 1 2/5.
***
5. Решите уравнения:
1) х² = 6x;
x²-6x=0;
x(x-6)=0;
x1=0;
x-6=0;
x2=6.
***
2) х² + 7x - 3 = 7х +6; (+7х слева и +7х справа в сумме дают 0);
x²=9;
x1,2=±3.
***
3) 3х² + 9 = 12х +9; (+9 слева и +9 справа от знака равенства взаимно уничтожаются, так как в сумме дают 0);
3x²-12x=0;
3x(x-4)=0;
3x=0;
x1=0;
---
x-4=0;
x=4.