а) Если чисел выписано 7, то их было задумано 3. Их не могло быть меньше (у двух чисел сумм выписывается всего 3), и не могло быть больше (у четырёх чисел сумм будет 15). Нуля в наборе нет, а есть положительные и отрицательные числа. Какое-то встречается один раз, а какое-то два. Если отрицательное число одно, то положительных два, но тогда из них формируются три положительные суммы. Значит, было два отрицательных числа и одно положительное число, равное 7. Из отрицательных чисел может быть сформировано -5, чтобы в сумме с 7 получалось 2. Сумма же отрицательных чисел равна -13. Значит, это числа -8 и -5. А весь набор задуманных чисел был такой: -8, -5, 7. Легко видеть, что этот вариант подходит.
б) Пример с пятью числами: -2,-1,0,1,2. Легко проверяется, что выписано будет 31 число, где ±3 появляется 2 раза, ±2 -- 4 раза, ±1 -- 6 раз, и 0 появится ровно 7 раз. Четырёх различных чисел недостаточно. Это легко проверяется, так как 0 сам по себе встречается не более одного раза, среди пар он встречается не более двух раз (пары с одинаковой суммой не пересекаются), среди троек не более одного раза (все их суммы различны), и как сумма всех чисел тоже не более одного раза -- итого получается меньше семи.
в) Нет, не всегда. Пусть задуманы числа 1, 2, -3. Из них формируется набор чисел от -3 до 3 (без повторений). Ясно, что если у всех задуманных чисел сменить знак, то получится то же самое, поэтому задуманы могли быть и числа -1, -2, 3.
Если квадратное уравнение имеет одинаковые корни, то это значит, что оно имеет один корень. Один корень квадратное уравнение имеет в том случае, когда дискриминант равен 0. Поэтому нам надо найти дискриминант и приравнять его к нулю.
(3b + 5 )х² - 2(b - 1)x + 2 = 0;
D = b^2 - 4ac - коэффициенты a, b и c равны a = 3b + 5; b = - 2(b - 1); c = 1;
а) Если чисел выписано 7, то их было задумано 3. Их не могло быть меньше (у двух чисел сумм выписывается всего 3), и не могло быть больше (у четырёх чисел сумм будет 15). Нуля в наборе нет, а есть положительные и отрицательные числа. Какое-то встречается один раз, а какое-то два. Если отрицательное число одно, то положительных два, но тогда из них формируются три положительные суммы. Значит, было два отрицательных числа и одно положительное число, равное 7. Из отрицательных чисел может быть сформировано -5, чтобы в сумме с 7 получалось 2. Сумма же отрицательных чисел равна -13. Значит, это числа -8 и -5. А весь набор задуманных чисел был такой: -8, -5, 7. Легко видеть, что этот вариант подходит.
б) Пример с пятью числами: -2,-1,0,1,2. Легко проверяется, что выписано будет 31 число, где ±3 появляется 2 раза, ±2 -- 4 раза, ±1 -- 6 раз, и 0 появится ровно 7 раз. Четырёх различных чисел недостаточно. Это легко проверяется, так как 0 сам по себе встречается не более одного раза, среди пар он встречается не более двух раз (пары с одинаковой суммой не пересекаются), среди троек не более одного раза (все их суммы различны), и как сумма всех чисел тоже не более одного раза -- итого получается меньше семи.
в) Нет, не всегда. Пусть задуманы числа 1, 2, -3. Из них формируется набор чисел от -3 до 3 (без повторений). Ясно, что если у всех задуманных чисел сменить знак, то получится то же самое, поэтому задуманы могли быть и числа -1, -2, 3.
Если квадратное уравнение имеет одинаковые корни, то это значит, что оно имеет один корень. Один корень квадратное уравнение имеет в том случае, когда дискриминант равен 0. Поэтому нам надо найти дискриминант и приравнять его к нулю.
(3b + 5 )х² - 2(b - 1)x + 2 = 0;
D = b^2 - 4ac - коэффициенты a, b и c равны a = 3b + 5; b = - 2(b - 1); c = 1;
D = (- 2(b - 1))^2 - 4 * (3b + 5 ) * 2 = 4(b^2 - 2b + 1) - 8(3b + 5) = 4b^2 - 8b + 4 - 24b - 40 = 4b^2 - 32b - 36;
4b^2 - 32b - 36 = 0 - поделим почленно на 4;
b^2 - 8b - 9 = 0;
D = (- 8)^2 - 4 * 1 * (- 9) = 64 + 36 = 100; √D = 10;
x = (- b ± √D)/(2a);
b1 = (8 + 10)/2 = 9;
b2 = (8 - 10)/2 = - 1.
По условию нам нужен отрицательное значение b, поэтому в ответ записываем только отрицательный корень.