Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
1. Если к обеим частям верного неравенства прибавить (отнять) одно и тоже число, то получится верное неравенство.
2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства останется прежним; если же - на отрицательное, то знак неравенства изменится на противоположный.
3. Неравенства одного знака можно складывать.
4. Неравенства одного знака можно умножать, если их левые и правые части положительны.
№ 1. 4 < а < 9 и 3 < b < 8.
1) 4 < а < 9 2) 4 < а < 9 3) 3 < b < 8
3 < b < 8 3 < b < 8 -9 < -a < -4
7 < a + b < 17 12 < ab < 72 -6 < b - a < 4
4) 16 < 4a < 36 5) 12 < 3a < 27
9 < 3b < 24 -32 < -4b < -12
25 < 4a + 3b < 60 -20 < 3a - 4b < 15
№ 2. Средняя линия трапеции равна полусумме оснований,
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.
Свойства неравенств:
1. Если к обеим частям верного неравенства прибавить (отнять) одно и тоже число, то получится верное неравенство.
2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства останется прежним; если же - на отрицательное, то знак неравенства изменится на противоположный.
3. Неравенства одного знака можно складывать.
4. Неравенства одного знака можно умножать, если их левые и правые части положительны.
№ 1. 4 < а < 9 и 3 < b < 8.
1) 4 < а < 9 2) 4 < а < 9 3) 3 < b < 8
3 < b < 8 3 < b < 8 -9 < -a < -4
7 < a + b < 17 12 < ab < 72 -6 < b - a < 4
4) 16 < 4a < 36 5) 12 < 3a < 27
9 < 3b < 24 -32 < -4b < -12
25 < 4a + 3b < 60 -20 < 3a - 4b < 15
№ 2. Средняя линия трапеции равна полусумме оснований,
т.е. с = (a + b)/2.
10 < а < 14
9 < b < 16
19 < a + b < 30
9,5 < (a + b)/2 < 15
9,5 < c < 15