1) Новый общий знаменатель для двух дробей это y в максимальной присутствующей степени, т.е. y^{4}. Тогда дополнительным множителем к первой дроби будет единица, а ко второй дроби y^{3}. Получается \frac{2x}{y^{4}} и \frac{3x^{3}}{y^{4}}. 2) Дополнительный множитель к первой дроби будет y, а ко второй a^{5}. Получается \frac{2by}{ya^{5}} и \frac{6a^{5}}{ya^{5}}. 3) Новый общий знаменатель для двух дробей будет это 6x^{2}y^{2}. Тогда дополнительный множитель к первой дроби будет 2x, а ко второй y. Получается \frac{7y}{6x^{2}y^{2}} и \frac{4x}{6x^{2}y^{2}}. 4) Новым общим знаменателем для двух дробей будет 7x(x+5). Тогда дополнительным множителем к первой дроби будет 7x, а ко второй (x+5). Получается \frac{28x}{7x(x+5)} и \frac{3x+15}{7x(x+5)}. 5) Т.к. новый общий знаменатель должен включать в себя все множители из обоих дробей, то он будет равен (3x-3y)(4x+4y). Из каждой скобки можно вынести общий множитель, перемножить их, а скобки свернуть по формуле "разность квадратов": (3x-3y)(4x+4y)=3(x-y)4(x+y)=12(x^{2}-y^{2}). ответ и будет являться новым общим знаменателем. Дополнительный множитель к первой дроби будет (3x-3y), а ко второй (4x+4y). Получается \frac{8x^{2}+8xy}{12(x^{2}-y^{2})} и \frac{9xy-9y^{2}}{12(x^{2}-y^{2})}. 6) Из знаменателя первой дроби вынесем общий множитель: 2a+2=2(a+1). Таким образом новый общий знаменатель будет равен 2(a+1). Дополнительный множитель к первой дроби будет 1, а ко второй 2. Получается \frac{a}{2(a+1)} и \frac{6}{2(a+1)}.
Получается \frac{2x}{y^{4}} и \frac{3x^{3}}{y^{4}}.
2) Дополнительный множитель к первой дроби будет y, а ко второй a^{5}. Получается \frac{2by}{ya^{5}} и \frac{6a^{5}}{ya^{5}}.
3) Новый общий знаменатель для двух дробей будет это 6x^{2}y^{2}.
Тогда дополнительный множитель к первой дроби будет 2x, а ко второй y. Получается \frac{7y}{6x^{2}y^{2}} и \frac{4x}{6x^{2}y^{2}}.
4) Новым общим знаменателем для двух дробей будет 7x(x+5). Тогда дополнительным множителем к первой дроби будет 7x, а ко второй (x+5). Получается \frac{28x}{7x(x+5)} и \frac{3x+15}{7x(x+5)}.
5) Т.к. новый общий знаменатель должен включать в себя все множители из обоих дробей, то он будет равен (3x-3y)(4x+4y). Из каждой скобки можно вынести общий множитель, перемножить их, а скобки свернуть по формуле "разность квадратов":
(3x-3y)(4x+4y)=3(x-y)4(x+y)=12(x^{2}-y^{2}). ответ и будет являться новым общим знаменателем.
Дополнительный множитель к первой дроби будет (3x-3y), а ко второй (4x+4y). Получается \frac{8x^{2}+8xy}{12(x^{2}-y^{2})} и \frac{9xy-9y^{2}}{12(x^{2}-y^{2})}.
6) Из знаменателя первой дроби вынесем общий множитель:
2a+2=2(a+1). Таким образом новый общий знаменатель будет равен 2(a+1). Дополнительный множитель к первой дроби будет 1, а ко второй 2. Получается \frac{a}{2(a+1)} и \frac{6}{2(a+1)}.
а) z* = -z·i
z = x + iy
x - iy = -(x + iy)·i
x - iy = -ix + y
x + ix = y + iy
x·(1 + i) = y·(1 + i)
y = x
z = x + ix, x ∈ R
б) 2·|z| - 8z + 1 + 2i = 0
z = x + iy
2√(x² + y²) - 8·(x + iy) + 1 + 2i = 0
2√(x² + y²) - 8x - i8y + 1 + 2i = 0
2√(x² + y²) = (8x - 1) + i(8y - 2)
2√(x² + y²) = 8x - 1
8y - 2 = 0
y = 1/4
2√(x² + (1/4)²) = 8x - 1
4(x² + 1/16) = 64x² - 16x + 1
8x - 1 ≥ 1/2
4x² + 1/4 = 64x² - 16x + 1
8x ≥ 3/2
60x² - 16x + 3/4 = 0
x ≥ 3/16
240x² - 64x + 3 = 0
D = 64² - 4·240·3 = 1216
x = (64 (+/-) √1216)/480 = (64 (+/-) 8√19)/480 = (8 (+/-) √19)/60
x = 2/15 (+/-) √19/60
x ≥ 3/16
x = 2/15 + √19/60
z = 2/15 + √19/60 + i/4