Из формулы f = 9 – 3n переменную n.
выберите выражение, которое тождественно равно выражению 3х – 4у.
варианты ответов : а) 2х – 5у + х + у; б) 2х – 5у +х - у; в) –(3х + 4у); г) х – (4х + 4у).
составить выражение по условию : из пунктов а и в одновременно два автомобиля выехали навстречу друг другу. скорость первого автомобиля v км/ч, второго автомобиля u км/ч. встретились они через 2,5 ч. расстояние между пунктами а и в равно.
Объяснение:
1.
а) так как коэффициент при x² равен 1, т.е. положителен, то ветви параболы направлены вверх.
б) выделяем полный квадрат: y=(x-7/2)²-25/4. Отсюда следует, что абсцисса вершина параболы x=7/2, а ордината y=-25/4. Поэтому вершина параболы имеет координаты (7/2; -25/4).
с) ось симметрии параболы - это прямая, проходящая через её вершину параллельно оси ОУ. Поэтому в данном случае ось симметрии имеет уравнение x=7/2.
d) решая уравнение x²-7*x+6=(x-7/2)²-25/4, находим x1=6, x2=1. Поэтому функция обращается в 0 в точках (1;0) и (6;0).
e) пусть x=0, тогда y=6, пусть x=7, тогда y=6. Таким образом, найдены две дополнительные точки: (0;6) и (7;6)
2.
а) f(3)=-3²+2*3+15=12, f(-5)=-(-5)²+2*(-5)+15=-20.
б) пусть x=k. Подставляя это значение в выражение для функции, приходим к уравнению 7=-k²+2*k+15, или k²-2*k-8=0. Оно имеет решения k1=4, k2=-2. Таким образом, график проходит через точки (-2;7) и (4;7).
3.
выделяя полный квадрат, запишем уравнение для v(t) в виде v(t)=9-(h-1)²
1) приравнивая v(t) к нулю, приходим к уравнению 9-(h-1)²=0. Решая его и учитывая, что h>0, находим максимальную глубину h=4 м.
2) из уравнения v(t)=9-(h-1)² следует, что наибольшее значение, равное 9 м/с, v(t) достигает при h=1 м.
у = -24
у = 0
х первое = -1
х второе = 2/3
Так как график - парабола, при у = 0 две точки пересечения с осью Х
а) Подставить в уравнение значение х, получим значение у:
х = 2
у = (-3) * 2² - 5 * 2 - 2
у = -12 - 10 - 2
у = -24
х = -1
у = (-3) * (-1)² - 5 * (-1) - 2
у = -3 + 5 - 2
у = 0
б) По условию у = 0, подставляем в уравнение (ищем х):
0 = -3х² - 5х - 2
3х² + 5х + 2 = 0, квадратное уравнение, ищем корни:
х первое, второе = ( -5 ± √25-24) / 6
х первое, второе = ( -5 ± √1) / 6
х первое, второе = ( -5 ± 1) / 6
х первое = -1
х второе = 2/3
Так как график - парабола, при у = 0 две точки пересечения с осью Х