Измерив рост девятиклассников, результаты записали в таблицу: 170 171 176 168 179 172
178 175 161 174 167 177
165 170 184 172 1 71 169
178 168 171 163 175 180
173 176 174 183 173 177
Сгруппировав данные по классам 160-164,165-169,…,180-184, представить
частотное распределение роста учащихся по этим классам с : 1)
таблицы частот; 2) полигона частот.
Обозначим первоначальную цену чашки до подорожания за (х) %, а первоначальную цену блюдца за (у)%, тогда первоначальная цена стоимость чайной пары составляет:
(х+у)=100%
После подорожания чашки на 15%, стоимость чашки равна:
х+15% *х :100%=х+0,15х=1,15х (%)
После подорожания блюдца на 27%, стоимость блюдца стала равной:
у+ 27%*у :100%=у+0,27у=1,27у (%)
А так как стоимость чайной пары после подорожания чашки и блюдца подорожала на 18%, то есть стала стоить100%+18%=118%, составим уравнение:
1,15х+1,27у=118%
Решим получившуюся систему уравнений:
х+у=100
1,15х+1,27у=118
Из первого уравнения найдём значение (х)
х=100-у Подставим значение (х) во второе уравнение:
1,15*(100-у)+1,27у=118
115 -1,15у+1,27у=118
0,12у=118-115
0,12у=3
у=3 : 0,12
у=25 (%)
Подставим найденное значение (у) в х=100-у
х=100-25=75 (%)
Определим сколько процентов от чайной пары составляет стоимость чашки до подорожания:
75% : 100% *100%=75%
ответ: Процент стоимости чашки от чайной пары до подорожания составляет 75%
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z