4x³+8x²-x-2=0 Решаем уравнение высших степеней. Находим целые корни: свободный член -2, его делители 1, -1, 2, -2 Подставляем их в исходное равенство до получения тождества. При х=-2: 4*(-2)³+8*(-2)²-(-2)-2=-32+32+2-2=0 То есть х=-2 является корнем. Далее разделим многочлен 4x³+8x²-x-2 на (х+2) 4x³+8x²-x-2 |x+2 - ------ 4x³+8x² 4x²-1 ---------- -x-2 -x-2 ------- 0 4x³+8x²-x-2=(x+2)(4x²-1)=(x+2)*(2x-1)(2x+1) (x+2)(2x-1)(2x+1)=0 x+2=0 2x-1=0 2x+1=0 x=-2 2x=1 2x=-1 x=1/2 x=-1/2
ОДЗ: x-2≠0 x+3≠0
x≠2 x≠-3
4x³+8x²-x-2=0
Решаем уравнение высших степеней.
Находим целые корни: свободный член -2, его делители 1, -1, 2, -2
Подставляем их в исходное равенство до получения тождества.
При х=-2: 4*(-2)³+8*(-2)²-(-2)-2=-32+32+2-2=0
То есть х=-2 является корнем.
Далее разделим многочлен 4x³+8x²-x-2 на (х+2)
4x³+8x²-x-2 |x+2
- ------
4x³+8x² 4x²-1
----------
-x-2
-x-2
-------
0
4x³+8x²-x-2=(x+2)(4x²-1)=(x+2)*(2x-1)(2x+1)
(x+2)(2x-1)(2x+1)=0
x+2=0 2x-1=0 2x+1=0
x=-2 2x=1 2x=-1
x=1/2 x=-1/2
√(5+√21)=1/2(√14+√6)
Остальные точно такие же. В последнем представить, как квадрат разности. Порешай по этому образцу.
Объяснение:
√(5+√21);
Необходимо избавиться от внешнего радикала. Для этого представить выражение под радикалом в виде квадрата суммы:
√(a²+2ab+b²)=√(a+b)²=l a+b l (по модулю, потому что под квадратным корнем выражение должно быть положительным.
Вот и превратим рациональное число в сумму квадратов, а иррвциональное - в удвоенное произведение:
a²+b²=5;
2ab=√21;
Решаем:
2ab=√21
b=√21/(2a);
а≠0
Подставляем:
a²+(√21/2a)²=5;
a²+21/4a²=5
Биквадратное:
4a⁴+21=5*4a²;
4a⁴-20a²+21=0;
делаем замену:
a²=z
4z²-20z+21=0;
D=400-336=64
z₁₂=1/8(20±8);
z₁=28/8=7/2; z₂=12/8=3/2;
a²=z
a²₁₂=7/2; a₁₂=±√(7/2)
a²₃₄=3/2; a₃₄=±√(3/2);
Всего четыре корня. Берем, например, первый
b=√21/2a;
b=√21/(2√(7/2))=√(21*2)/√28=√(3*7*2)/4*7)=√(3/2);
Проверка:
√(√(7/2))²+2√(7/2)√(3/2)+(√(3/2)²)=
7/2+2√(21/4)+3/2=5+√21; Правильно!
Продолжаем:
√(√(7/2))²+2√(7/2)√(3/2)+(√(3/2)²)=√(√(7/2)+√(3/2))²=
l√(7/2)+√(3/2)l=√(7/2)+√(3/2)=1/(√2)(√7+√3)=1/2((√2)(√7+√3))=1/2(√14+√6)