Уравнение здесь имеет вид u3+u=v3+v, где u=2x2, v=3x+5a. От него можно перейти к равносильному равенству u=v по следующей причине. Функция f(u)=u3+u имеет производную f′(u)=3u2+1, которая всюду положительна. Поэтому f(u) строго монотонно возрастает на всей области определения. Поэтому её значения в различных точках не могут совпадать. Таким образом, мы приходим к равносильному условию u=v, а это квадратное уравнение 2x2−3x−5a=0. Находим дискриминант, и пишем, что он положителен: в этом и только в этом случае уравнение будет иметь более одного корня.
1-ый класс - 42 ученика
2-ой класс - ? учеников, на 3 <, чем в 3-ем ВСЕГО: 125 учеников
3-ий класс - ? учеников
Пусть Х учеников - в 3-ем классе (это вопрос задачи, поэтому его принимаем за Х).
Тогда во 2-ом классе - (Х-3) учеников. В 1-ом классе - 42 ученика. Всего 125 учеников (т.е. находим сумму). Составим уравнение:
42+(Х-3)+Х=125
42+Х-3+Х=125
Х+Х+42-3=125
2Х+39=125
2Х=125-39
2Х=86
Х=86:2
Х=43
ответ: 43 ученика в 3-ем классе.
Уравнение здесь имеет вид u3+u=v3+v, где u=2x2, v=3x+5a. От него можно перейти к равносильному равенству u=v по следующей причине. Функция f(u)=u3+u имеет производную f′(u)=3u2+1, которая всюду положительна. Поэтому f(u) строго монотонно возрастает на всей области определения. Поэтому её значения в различных точках не могут совпадать. Таким образом, мы приходим к равносильному условию u=v, а это квадратное уравнение 2x2−3x−5a=0. Находим дискриминант, и пишем, что он положителен: в этом и только в этом случае уравнение будет иметь более одного корня.