Объяснение:
1)Пусть боковая сторона равна x см, тогда основание равно y см. Зная, что основание на 7 больше, составлю первое уравнение системы:
y-x = 7
Зная, что периметр равнобедренного треугольника равен 43 см(для равнобедренного треугольника получаем выражение 2x + y), составлю второе уравнение системы:
2x + y = 43
Таким образом, получаем следующую систему уравнений:
2x+y = 43
решу систему методом подстановки:
y = x+7
2x + x+7 = 43 (1)
(1)2x+x+7 = 43
3x+7 = 43
3x = 36
x = 12
12 см - боковая сторона треугольника, но надо всё равно дорешать систему.
y = 12+7 = 19
ответ, 12 см равна боковая сторона. ответ на вопрос задачи мы получили.
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
Объяснение:
1)Пусть боковая сторона равна x см, тогда основание равно y см. Зная, что основание на 7 больше, составлю первое уравнение системы:
y-x = 7
Зная, что периметр равнобедренного треугольника равен 43 см(для равнобедренного треугольника получаем выражение 2x + y), составлю второе уравнение системы:
2x + y = 43
Таким образом, получаем следующую систему уравнений:
y-x = 7
2x+y = 43
решу систему методом подстановки:
y = x+7
2x + x+7 = 43 (1)
(1)2x+x+7 = 43
3x+7 = 43
3x = 36
x = 12
12 см - боковая сторона треугольника, но надо всё равно дорешать систему.
x = 12
y = 12+7 = 19
ответ, 12 см равна боковая сторона. ответ на вопрос задачи мы получили.
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.