Если следовать условию задачи, то у нас получается прямоугольный треугольник, в котором АС и СВ катеты, а АВ гиппотенуза.
Синус угла А=Против катет (СВ)\Гиппотенузу(АВ)
Чтобы найти угол нужно найти катет СВ. Для этого воспользуемся теоремой пифагора. АВ в квадрате-АС в квадрате=СВ в квадрате.=> 900-576=324=> СВ в квадрате=324, значит, СВ=18
Теперь находим синус. Sin A= 18/30=0,6. Чтобы узнать градусную меру, нужно, воспользоваться таблицей Брадиса. По таблице Брадиса Sin 0,6=37 градусов.(примерно)
Мы знаем, что первоначальное число трехзначное, и первая цифра 9. Пусть вторая и третья цифры будут x и y. Тогда у нас есть число 9xy. После того, как мы переставили 9 на последнее место, получилось число xy9. Далее считаем(лучше всего в столбик).
_9xy
xy9
576
Так как 6+ 9=15, то y=5, а десяток был взят из x. Тогда получаем пример:
_9x5
x59
576
Далее складываем 7+5=12, плюс тот десяток, который мы отдали y. Получается 13. Значит x=3, десяток брали из 9. Проверяем:
Если следовать условию задачи, то у нас получается прямоугольный треугольник, в котором АС и СВ катеты, а АВ гиппотенуза.
Синус угла А=Против катет (СВ)\Гиппотенузу(АВ)
Чтобы найти угол нужно найти катет СВ. Для этого воспользуемся теоремой пифагора. АВ в квадрате-АС в квадрате=СВ в квадрате.=> 900-576=324=> СВ в квадрате=324, значит, СВ=18
Теперь находим синус. Sin A= 18/30=0,6. Чтобы узнать градусную меру, нужно, воспользоваться таблицей Брадиса. По таблице Брадиса Sin 0,6=37 градусов.(примерно)
Число 935.
Мы знаем, что первоначальное число трехзначное, и первая цифра 9. Пусть вторая и третья цифры будут x и y. Тогда у нас есть число 9xy. После того, как мы переставили 9 на последнее место, получилось число xy9. Далее считаем(лучше всего в столбик).
_9xy
xy9
576
Так как 6+ 9=15, то y=5, а десяток был взят из x. Тогда получаем пример:
_9x5
x59
576
Далее складываем 7+5=12, плюс тот десяток, который мы отдали y. Получается 13. Значит x=3, десяток брали из 9. Проверяем:
_935
359
576