Если вы хотите решить уравнение, в котором переменная (х) имеет степень больше единицы, то записывать его следует так: 2x^3+3x^2+4=0 Систему линейных уравнений следует записывать через запятую: x+y=10, x-y=4 Уравнения из системы следует записать через запятую, например x^3 + 2x^2 + 5 = 0, 3х=0 Для решения уравнения с параметром следует воспользоваться оператором solve. Например: 2x3+ax+6=0 решаем относительно x, тогда запись будет такой solve 2x^3+ax+6=0 for x Если вы хотите решить неравенство, то его следует записать так: | |4x-2|-7<3 Запись тригонометрических уравнений выполняется так: sin x + cos x = 1
Систему линейных уравнений следует записывать через запятую: x+y=10, x-y=4
Уравнения из системы следует записать через запятую, например x^3 + 2x^2 + 5 = 0, 3х=0
Для решения уравнения с параметром следует воспользоваться оператором solve. Например: 2x3+ax+6=0 решаем относительно x, тогда запись будет такой solve 2x^3+ax+6=0 for x
Если вы хотите решить неравенство, то его следует записать так: | |4x-2|-7<3
Запись тригонометрических уравнений выполняется так: sin x + cos x = 1
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z