Известно, что a + b + c < 0 и что уравнение axи y такие, что2+bxи y такие, что+c=0 не имеет действительных корней. Определите, какой знак имеет число с.
Пусть скорость реки (она же скорость плота) равна х км/ч. Тогда 36/(12-х) время в пути лодки (лодка плыла против течения реки) 36/х время в пути плота (плот плыл по течению реки) Уравнение: 36/х - 36/(12-х) =8 36/х - 36/(12-х) -8 = 0 Приводим к общему знаменателю (12-х)*х , получаем в числителе: 36(12-х)-36х-8(12х-х²)=0 При х не равном 12 и 0 получаем: 432-36х-36х-96х+8х²=0 8х²-168х+432=0 D=14400 х=3 - корень уравнения х=18 - не является корнем (т.к. 12-18= - 6 км/ч - не может быть)
Любой многочлен степени n вида  представляется произведением постоянного множителя при старшей степени  и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни  и  многочлена  являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где 
Тогда 36/(12-х) время в пути лодки (лодка плыла против течения реки)
36/х время в пути плота (плот плыл по течению реки)
Уравнение:
36/х - 36/(12-х) =8
36/х - 36/(12-х) -8 = 0
Приводим к общему знаменателю (12-х)*х , получаем в числителе:
36(12-х)-36х-8(12х-х²)=0
При х не равном 12 и 0 получаем:
432-36х-36х-96х+8х²=0
8х²-168х+432=0
D=14400
х=3 - корень уравнения
х=18 - не является корнем (т.к. 12-18= - 6 км/ч - не может быть)
ответ. скорость плота 3 км/ч
Объяснение:
Любой многочлен степени n вида  представляется произведением постоянного множителя при старшей степени  и n линейных множителей , i=1, 2, …, n, то есть , причем , i=1, 2, …, n являются корнями многочлена.
Эта теорема сформулирована для комплексных корней , i=1, 2, …, n и комплексных коэффициентов , k=0, 1, 2, …, n. Она является основой для разложения любого многочлена на множители.
Если коэффициенты , k=0, 1, 2, …, n – действительные числа, то комплексные корни многочлена ОБЯЗАТЕЛЬНО будут встречаться комплексно сопряженными парами.
К примеру, если корни  и  многочлена  являются комплексно сопряженными, а остальные корни действительные, то многочлен представится в виде , где