Все очень просто, двойку представляем как log3(3^2); Т.к. с двух сторон логарфимы с одинаковым основанием мы имеем право "отбросить" их. Далее - обычная арифметика.
Можно сделать проверку, на правильность нахождения корня. (С более сложными уравнениями она понадобится, ибо бывают "ложные" корни, при которых не выполняется равенство уравнения).
Подставляем значение 12 вместо икса:
log3(12-3)=2;
log3(9)=2;
log3(3)^2=2;
Согласно вышесказанной формуле, получаем:
2=2.
Корень найден нами верно. (Хотя другого варианта и не могло быть в данном уравнении).
Сумма второго и четвертого члена арифметической прогрессии равна 14, а седьмой её член на 12 больше третьего.Найдите разность и первый член данной прогрессии кто может.
Решение
а2+а4=14 так вот а7=а3+12
тогда
по характеристическому свойству арифметической прогрессии:
Все очень просто, двойку представляем как log3(3^2); Т.к. с двух сторон логарфимы с одинаковым основанием мы имеем право "отбросить" их. Далее - обычная арифметика.
Можно сделать проверку, на правильность нахождения корня. (С более сложными уравнениями она понадобится, ибо бывают "ложные" корни, при которых не выполняется равенство уравнения).
Подставляем значение 12 вместо икса:
log3(12-3)=2;
log3(9)=2;
log3(3)^2=2;
Согласно вышесказанной формуле, получаем:
2=2.
Корень найден нами верно. (Хотя другого варианта и не могло быть в данном уравнении).
ответ: x=12.
Сумма второго и четвертого члена арифметической прогрессии равна 14, а седьмой её член на 12 больше третьего.Найдите разность и первый член данной прогрессии кто может.
Решение
а2+а4=14 так вот
а7=а3+12
тогда
по характеристическому свойству арифметической прогрессии:
a(n)=(a(n-1)+a(n+1))/2
а3=(а2+а4)/2=14/2=7
а7=7+12=19
a(n)=a1+d*(n-1)
a(3)=a1+2*d=7
a(7)=a1+6*d=19
тогда
a1=7-2*d
и подставим
(7-2*d)+6*d=19
4*d=12
d=3
a1=7-2*3=1
Проверим
1_4_7_10_13_16_19 - такая прогрессия
сумма 2-го и 4-го = 4+10=14 - истина
19-7=12 - истина
ответ:
первый член прогрессии (а1)=1
разность арифметической прогрессии (d)=3
Оценка: 5