Известно что в некотором регионе вероятность того что родившийся младенец окажется мальчиком равна 0,492. В 2004г в этом регионе на 1000 родившихся младенцев в среднем пришлось 531 девочек. Насколько частота рождения девочек в 2004г в этом году отличается от вероятности этого события? (с решением
какие огромные числа.. навремя сократим количество нулей на пять)
Пусть президент получает 10, заместители 2, а служащие 1.
Найдем среднее арифметическое:
(10+4*2+20*1)/1+4+20=38\25=1.52
Найдем моду, но тут думаю понятно что мода это 1.
Найдем медиану, для этого выпишем все данные в порядке возрастания и попарно будем зачеркивать наибольшее число и наименьшее, тем самым подбираясь к середине.
Если в середине останется 1 число - оно и будет модой, если останется пара чисел - модой будет их среднее арифметическое.
Медиана здесь тоже равна 1.
Не забываем добавить к ответу пять нулей и получаем:
Ср.Арифметическое - 152000р
Мода - 10000р
Медиана - 10000
1. находим критич. точки. приравнивая производную к нулю.
2. устанавливаем знак производной. т.е. решаем неравенство f'>0( или f'<0)
3 промежутки в которых производная больше нуля - промежутки строго возрастания функции.
а) у'>0
10x-3>0⇒x>0.3, т.к функция непрерывна во всей своей обл. определения. то в промежутки возрастания и убывания можно включить и концы промежутка.
при х∈[0.3;+∞) функция возрастает, при х∈(-∞;0.3] убывает.
2. у'=2/х² эта производная при х∈(-∞;0) и (0;+∞) положительна. значит, функция возрастает при х∈(-∞;0) и (0;+∞)
3. у'=-6/х3, при х∈(0;+∞) функция убывает. при х∈(-∞;0) возрастает.
4. у'=(2х²-х²-1)/х²=(х²-1)х²=(х-1)(х+1)/х²
___-101
+ - - +
убывает функция на промежутках [-1;0) и (0;1] и возрастает (-∞;-1] и [1;+∞)