▪Сравним: (4/3)√2 и (6/5)√2, т.к. в левой и правой части √2 = √2, значит будем сравнивать: (4/3) и (6/5) ▪чтобы сравнить 4/3 и 6/5 приведем дроби к НОЗ = 15: 4/3 = 20/15 6/5 = 18/15 ▪сравним: 20/15 > 18/15 (т.к. знаменатели равны сравниваем только числители 20>18)
▪Вывод:
20/15 > 18/15, значит 4/3 > 6/5 соответственно (4/3)√2 > (6/5)√2, (1/3)√32 > (1/5)√72 М > N
Раскрываем скобки
x^3 - 7x^2 - 4x^2 + 28x - 49x + 343 - x^2 - 4x + 21 = 0
x^3 - 12x^2 - 29x + 364 = 0
Это уравнение имеет 3 иррациональных корня, их можно подобрать.
f(-5) = 84 > 0; f(-6) = -110 < 0
-6 < x1 < -5
f(5) = 44 > 0; f(6) = -26 < 0
5 < x2 < 6
f(11) = -76 < 0; f(12) = 16 > 0
11 < x3 < 12
Можно дальше уточнить
x^3 - 12x^2 - 29x + 364 = 0
f(-5,4) = 13,216 > 0; f(-5,5) = -5,875 < 0
-5,5 < x1 < -5,4
f(-5,47) = -0,088123
x1 ~ -5,47
f(5,5) = 7,875 > 0; f(5,6) = 0,896 > 0; f(5,7) = -5,987 < 0
f(5,61) = 0,203281
x2 ~ 5,61
f(11,8) = -6,048 < 0; f(11,9) = 4,739 > 0
11,8 < x3 < 11,9
f(11,86) = 0,367656
x3 ~ 11,86
N = (1/5)√72 = 1/5 × √36 × √2 = 1/5 × √(6^2) × √2 = 1/5 × 6√2 = (6/5)√2;
▪Сравним:
(4/3)√2 и (6/5)√2,
т.к. в левой и правой части √2 = √2, значит будем сравнивать:
(4/3) и (6/5)
▪чтобы сравнить 4/3 и 6/5 приведем дроби к НОЗ = 15:
4/3 = 20/15
6/5 = 18/15
▪сравним:
20/15 > 18/15
(т.к. знаменатели равны сравниваем только числители 20>18)
▪Вывод:
20/15 > 18/15, значит
4/3 > 6/5 соответственно
(4/3)√2 > (6/5)√2,
(1/3)√32 > (1/5)√72
М > N