Обозначим одну сторону детской площадки за Х а вторую за Х+4 составляем уравнение х(х+4)=140
Вычисляем корни квадратного уравнения
м м Так как сторона не может быть отрицательным числом то второй корень не подходит по условию задачи по этому меньшая сторона детской площадки равна 10 м а большая сторона равна 10+4=14 м
Чтобы определить сколько материала требуется для бордюра находим периметр детской площадки P=2*(10+14)=2*24=48 м Вычисляем сколько упаковок материала для бордюра необходимо приобрести упаковок
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
составляем уравнение
х(х+4)=140
Вычисляем корни квадратного уравнения
м
м
Так как сторона не может быть отрицательным числом то второй корень не подходит по условию задачи по этому меньшая сторона детской площадки равна 10 м а большая сторона равна 10+4=14 м
Чтобы определить сколько материала требуется для бордюра находим периметр детской площадки
P=2*(10+14)=2*24=48 м
Вычисляем сколько упаковок материала для бордюра необходимо приобрести
упаковок
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: