У последних двух надо решить уравнения, узнать, какие числа обращают в нуль знаменатель и выбросить из допустимых значений. т.к. делить на нуль нельзя.
4) c∈(-∞;-2)∪(-2;2)∪(2;+∞); I2cI=4⇒с=±2, значит,
c∈(-∞;-2)∪(-2;2)∪(2;+∞)
3-Iа/3+2I=0; Iа/3+2I=3; а/3+2=±2; откуда а =-15, а =3, и ответ
а∈(-∞;-15)∪(-15;3)∪(3;+∞), откуда выброшены точки -15 и 3.
остальные решаются устно. т.е. выбрасываются значения, которые обращают в нуль знаменатель.
d) t∈R, т.к. ни при каких t (t ²+36) в нуль не обратишь, это сумма неотрицательного t ² и положительного числа 36, и эта сумма положительна, т.е. допускает любое значение переменной t
Объяснение: Кількість команд які брали участь у турнірі позначемо х.
Перша команда тоді зіграла (х-1) кількість матчів;
Друга команда зіграла (х-2) кількість матчів;
Отже маєм арифметичну прогресію, де а₁=(х-1), а₂=(х-2),
а₃=(х-3), аₓ₋₁=1;
Різниця арифметичної прогресії d=a₂ - a₁ =(x-2) - (x-1) =
= x-2- x+1 = -1;
Сума членів цієї арифметичної прогресії і буде кількість зіграних
матчів яка рівна 36.
Отже маєм рівність: Sₓ₋₁ = ((2×(x-1) -1×(x-2))/2)×(x-1) = 36;
((2x-2-x+2)/2)= 36;
x×(x-1) = 72;
x²-x-72=0;
√D= √(b²-4ac) = √((-1)²-4×(-72)) = √(1+288)=√289=17;
x₁=(-b+√D)/2a = (-(-1)+17)/2 = (1+17)/2 = 18/2 =9;
x₂=(-b-√D)/2a= (-(-1)-17)/2 = (1-17)/2 = -16/2 = -8;
x₂= -8, - не може бути розв"язком бо є від"ємним числом.
Отже відповідь х₁=9;
Відповідь: 9 команд брало участь у турнірі.
а) х∈(-∞;-3)∪(-3;3)∪(3;+∞)
bв) р∈(-∞;-4)∪(-4;4)∪(4;+∞)
с) s∈(-∞;-2)∪(-2;2)∪(2;+∞)
d) t∈R
e) c∈(-∞;-2)∪(-2;2)∪(2;+∞)
f) а∈(-∞;-15)∪(-15;3)∪(3;+∞)
У последних двух надо решить уравнения, узнать, какие числа обращают в нуль знаменатель и выбросить из допустимых значений. т.к. делить на нуль нельзя.
4) c∈(-∞;-2)∪(-2;2)∪(2;+∞); I2cI=4⇒с=±2, значит,
c∈(-∞;-2)∪(-2;2)∪(2;+∞)
3-Iа/3+2I=0; Iа/3+2I=3; а/3+2=±2; откуда а =-15, а =3, и ответ
а∈(-∞;-15)∪(-15;3)∪(3;+∞), откуда выброшены точки -15 и 3.
остальные решаются устно. т.е. выбрасываются значения, которые обращают в нуль знаменатель.
d) t∈R, т.к. ни при каких t (t ²+36) в нуль не обратишь, это сумма неотрицательного t ² и положительного числа 36, и эта сумма положительна, т.е. допускает любое значение переменной t