а) a1 = 30, a2 = 24, d = 24 — 30 = -6
Формула n-ого члена: a(n) = 36 — 6n
b) Найдем количество положительных чисел в этой прогрессии
{ a(n) = 36 — 6n > 0
{ a(n+1) = 36 — 6(n+1) < 0
Раскрываем скобки
{ a(n) = 36 — 6n >= 0
{ a(n+1) = 36 — 6n — 6 = 30 — 6n < 0
Переносим n направо и делим неравенства на 6
{ 6 >= n
{ 5 < n
Очевидно, n = 5
a(5) = 36 — 6*5 = 6
a(6) = 36 — 6*6 = 0
c) Определим количество чисел, если их сумма равна -150.
S = (2a1 + d*(n-1))*n/2 = -150
(2*30 — 6*(n-1))*n = -150*2 = -300
(66 — 6n)*n = -300 = -6*50
Сокращаем на 6
(11 — n)*n = -50
n^2 — 11n — 50 = 0
(n — 25)(n + 2) = 0
Так как n > 0, то n = 25
Объяснение: Кількість команд які брали участь у турнірі позначемо х.
Перша команда тоді зіграла (х-1) кількість матчів;
Друга команда зіграла (х-2) кількість матчів;
Отже маєм арифметичну прогресію, де а₁=(х-1), а₂=(х-2),
а₃=(х-3), аₓ₋₁=1;
Різниця арифметичної прогресії d=a₂ - a₁ =(x-2) - (x-1) =
= x-2- x+1 = -1;
Сума членів цієї арифметичної прогресії і буде кількість зіграних
матчів яка рівна 36.
Отже маєм рівність: Sₓ₋₁ = ((2×(x-1) -1×(x-2))/2)×(x-1) = 36;
((2x-2-x+2)/2)= 36;
x×(x-1) = 72;
x²-x-72=0;
√D= √(b²-4ac) = √((-1)²-4×(-72)) = √(1+288)=√289=17;
x₁=(-b+√D)/2a = (-(-1)+17)/2 = (1+17)/2 = 18/2 =9;
x₂=(-b-√D)/2a= (-(-1)-17)/2 = (1-17)/2 = -16/2 = -8;
x₂= -8, - не може бути розв"язком бо є від"ємним числом.
Отже відповідь х₁=9;
Відповідь: 9 команд брало участь у турнірі.
а) a1 = 30, a2 = 24, d = 24 — 30 = -6
Формула n-ого члена: a(n) = 36 — 6n
b) Найдем количество положительных чисел в этой прогрессии
{ a(n) = 36 — 6n > 0
{ a(n+1) = 36 — 6(n+1) < 0
Раскрываем скобки
{ a(n) = 36 — 6n >= 0
{ a(n+1) = 36 — 6n — 6 = 30 — 6n < 0
Переносим n направо и делим неравенства на 6
{ 6 >= n
{ 5 < n
Очевидно, n = 5
a(5) = 36 — 6*5 = 6
a(6) = 36 — 6*6 = 0
c) Определим количество чисел, если их сумма равна -150.
S = (2a1 + d*(n-1))*n/2 = -150
(2*30 — 6*(n-1))*n = -150*2 = -300
(66 — 6n)*n = -300 = -6*50
Сокращаем на 6
(11 — n)*n = -50
n^2 — 11n — 50 = 0
(n — 25)(n + 2) = 0
Так как n > 0, то n = 25
Объяснение: Кількість команд які брали участь у турнірі позначемо х.
Перша команда тоді зіграла (х-1) кількість матчів;
Друга команда зіграла (х-2) кількість матчів;
Отже маєм арифметичну прогресію, де а₁=(х-1), а₂=(х-2),
а₃=(х-3), аₓ₋₁=1;
Різниця арифметичної прогресії d=a₂ - a₁ =(x-2) - (x-1) =
= x-2- x+1 = -1;
Сума членів цієї арифметичної прогресії і буде кількість зіграних
матчів яка рівна 36.
Отже маєм рівність: Sₓ₋₁ = ((2×(x-1) -1×(x-2))/2)×(x-1) = 36;
((2x-2-x+2)/2)= 36;
x×(x-1) = 72;
x²-x-72=0;
√D= √(b²-4ac) = √((-1)²-4×(-72)) = √(1+288)=√289=17;
x₁=(-b+√D)/2a = (-(-1)+17)/2 = (1+17)/2 = 18/2 =9;
x₂=(-b-√D)/2a= (-(-1)-17)/2 = (1-17)/2 = -16/2 = -8;
x₂= -8, - не може бути розв"язком бо є від"ємним числом.
Отже відповідь х₁=9;
Відповідь: 9 команд брало участь у турнірі.