1)ответ на фото
2)Треугольник АВС, угол В = 90, угол С = 60, АВ = 3√3 см
Угол А = 90 - 60 = 30
Напротив угла А = 30 лежит катет ВС вдвое меньше гипотенузы АС.
Пусть ВС = х, тогда АС = 2х
По теореме пифагора
4x^2 - x^2 = 27
3x^2 = 27
x^2 = 9
x = 3 cм - длина катета ВС
АС = 3 * 2 = 6 см.
ответ: 3 см, 6 см.
3)Так как трапеция равнобедренная, то AB=DC=5 см
EM=14-6=8cм⇒AE=MD=8÷2=4см
Теперь по Теореме Пифогора можем найти BE
AB²=AE²+EB²
BE=AB²-AE²(все под корнем)
ВЕ=5²-4²(всё под корнем)=√9=3 см
Sтрапеции=(BC+AD)÷2·BE
S=(6+14)÷2·3=30см²
ответ: 30 см².
(Чертёж в фото номер2)
4)пусть х меньшая сторона, а 4х большая
х*4х=36
х=3 см - меньшая сторона
3*3=9см кв площадь квадрата,построенного на меньшей стороне прямоугольника
Объяснение:
Удачи:)
Нужно само решение!
1. Розв'яжіть нерівність sinx >0 :
Відповідь: (2πn; π+2πn), n∊Z
2. cosx >-1/2
Відповідь: (-2π/3+2πn;2π/3+2πn), n∊Z
3. tgx<√3
Відповідь: (-π/2 +πn; π/3+πn)
4. sin2(x) < 1/2 (застосуйте формулу пониження степеня)
Відповідь: (-π/4+πn;π/4+πn), n∊Z
5. 2 sin(x/2 - π/4) ≥ -1
Відповідь: [π/6 + 4πn;17π/6 + 4πn], n∊Z
6. 4sin(x/2)cos(x/2)≤ -1
Відповідь: [-5π/6+2πn;-π/6+2πn], n∊Z
7. sin3xcosx-cos3xsinx ≤ 1/2 (застосуйте формули додавання для тригонометричних функцій)
Відповідь: [-7π/12 + πn;π/12 + πn], n∊Z
1)ответ на фото
2)Треугольник АВС, угол В = 90, угол С = 60, АВ = 3√3 см
Угол А = 90 - 60 = 30
Напротив угла А = 30 лежит катет ВС вдвое меньше гипотенузы АС.
Пусть ВС = х, тогда АС = 2х
По теореме пифагора
4x^2 - x^2 = 27
3x^2 = 27
x^2 = 9
x = 3 cм - длина катета ВС
АС = 3 * 2 = 6 см.
ответ: 3 см, 6 см.
3)Так как трапеция равнобедренная, то AB=DC=5 см
EM=14-6=8cм⇒AE=MD=8÷2=4см
Теперь по Теореме Пифогора можем найти BE
AB²=AE²+EB²
BE=AB²-AE²(все под корнем)
ВЕ=5²-4²(всё под корнем)=√9=3 см
Sтрапеции=(BC+AD)÷2·BE
S=(6+14)÷2·3=30см²
ответ: 30 см².
(Чертёж в фото номер2)
4)пусть х меньшая сторона, а 4х большая
х*4х=36
х=3 см - меньшая сторона
3*3=9см кв площадь квадрата,построенного на меньшей стороне прямоугольника
Объяснение:
Удачи:)
Нужно само решение!
1. Розв'яжіть нерівність sinx >0 :
Відповідь: (2πn; π+2πn), n∊Z
2. cosx >-1/2
Відповідь: (-2π/3+2πn;2π/3+2πn), n∊Z
3. tgx<√3
Відповідь: (-π/2 +πn; π/3+πn)
4. sin2(x) < 1/2 (застосуйте формулу пониження степеня)
Відповідь: (-π/4+πn;π/4+πn), n∊Z
5. 2 sin(x/2 - π/4) ≥ -1
Відповідь: [π/6 + 4πn;17π/6 + 4πn], n∊Z
6. 4sin(x/2)cos(x/2)≤ -1
Відповідь: [-5π/6+2πn;-π/6+2πn], n∊Z
7. sin3xcosx-cos3xsinx ≤ 1/2 (застосуйте формули додавання для тригонометричних функцій)
Відповідь: [-7π/12 + πn;π/12 + πn], n∊Z