Как решают систему двух уравнений с двумя переменными сложения?Какими могут быть первые шаги в решении систем |4x+y=-2 |2x+4y=2 { И { |3x-y=-1 |2x-5y=20
Если что, то это: | { | Типа фигурная скобка ~(•_•)~
1. Обсласть опрежедения функции: множество всех действительных чисел. 2. четность функции
Итак, функция четная. 3. Точки пересечения с осью Ох и Оу. 3.1. С осью Ох (у=0)
Через дискриминант
точки с соью Ох
3.2. Точки пересения с осью Оу (х=0)
(0;-3) - точки пересечения с осью Оу
4. Критические точки(возрастание и убывание функции)
Приравняем к нулю
_-_(-1)__+__(0)__-_(1)__+__>
Итак, функция возрастает на промежутке , убывает . В точке х=-1 и х=1 функция имеет локальный минимум, а в точке х=0 - локальный максимум 5. Точки перегиба
Вертикальных, горизональных и наклонных асимптот нет.
2. четность функции
Итак, функция четная.
3. Точки пересечения с осью Ох и Оу.
3.1. С осью Ох (у=0)
Через дискриминант
точки с соью Ох
3.2. Точки пересения с осью Оу (х=0)
(0;-3) - точки пересечения с осью Оу
4. Критические точки(возрастание и убывание функции)
Приравняем к нулю
_-_(-1)__+__(0)__-_(1)__+__>
Итак, функция возрастает на промежутке , убывает . В точке х=-1 и х=1 функция имеет локальный минимум, а в точке х=0 - локальный максимум
5. Точки перегиба
Вертикальных, горизональных и наклонных асимптот нет.
Отметь как лучший,буду рад!
1)Множество целых чисел Z включает в себя число 0, множество натуральных чисел и отрицательные числа .
2) Множество рациональных чисел Q включает в себя множество целых чисел Z и все дробные числа.
3) Вместо фразы m – целое число можно писать Z .
4) Вместо фразы r– рациональное число можно писать Q.
5) N – множество натуральных чисел множества Z , Z – множество целых чисел множества Q.
6) Повторяющая группа цифр после запятой в записи десятичной дроби называется периодом, а сама дробь называется периодической.
7) Множество Q рациональных чисел - это множество чисел вида m/n ,
где - m целое число, n – натуральное число , или как множество обыкновенных дробей.
Объяснение: