Для того, чтобы система не имела решений, графики её уравнений должны быть параллельны. Это значит, что коэффициенты при х и при у должны быть соответственно равны, а свободные члены не должны быть равны. Имеем:1) х+ау=1; коэф. при х равен 1, коэф. при у равен а, свободн. равен 12) х-3ау=2а+3; коэф.при х равен 1, коэф. при у равен -3а, своб. равен 2а+3Коэффициенты при х: 1=1Коэффициенты при у: а=-3а, а+3а=0, 4а=0, а=0Свободные члены: 1, 2*0+3=3 - не равны между собой.Все условия выполнены.
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываютсяam · an = am + nнапример: 71.7 · 7 - 0.9 = 71.7+( - 0.9) = 71.7 - 0.9 = 70.82. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаютсяam / an = am — n ,где, m > n,a ? 0например: 133.8 / 13 -0.2 = 13(3.8 -0.2) = 133.63. При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.(am )n = a m · nнапример: (23)2 = 2 3·2 = 264. При возведении в степень произведения в эту степень возводится каждый множитель(a · b)n = an · b m ,например:(2·3)3 = 2n · 3 m ,5. При возведении в степень дроби в эту степень возводятся числитель и знаменатель(a / b)n = an / bnнапример: (2 / 5)3 = (2 / 5) · (2 / 5) · (2 / 5) = 23 / 53