На первом витке окружности расставлены точки 0; π/2; π; 3π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 3π/4 На втором витке окружности расставлены точки 2π; 5π/2; 3π; 7π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 3π/4 + 2π=11π/4 На третьем витке окружности расставлены точки 4π; 9π/2; 5π; 11π/2 Точка (-√2/2; √2/2) во второй четверти, Ей соответствует значение 11π/4+2π=19π/4 На [0; 5π] точке М соответствуют значения 3π/4 ; 11π/4 ; 19π/4 На [π/2 ; 9π/2] точке М соответствуют значения 3π/4 ; 11π/4
На единичной окружности имеется точка абсцисса которой π/4≈3/4<1 Отмечаем эту точку на оси ох и проводим прямую || оси оу до пересечения с окружностью Это точки А и В Отметим точку с ординатой π/4 на оси оу и проводим прямую || оси ох до пересечения с окружностью. Получим точки К и Е
√17-√26 сравним с -1 Пусть √17-√26 > -1 √17 + 1 > √26 17 + 2√17 + 1 >26 2√17>8 4·17 > 64 - верно Значит точка существует Ей соответствуют на ед окружности точки Р и Т
Решение: 1) пусть х кг - вес третьего слитка, у кг - вес меди в третьем слитке. по условию в 1-ом слитке 30% меди, тогда 5·0,3 = 1,5 (кг) - чистой меди в первом слитке. по условию во 2-ом слитке тоже 30% меди, тогда 3·0,3 = 0,9 (кг) - чистой меди во втором слитке. 2) если первый слиток сплавили с третьим, то вес получившегося слитка равен (5 + х) кг, а количество в нём меди - (1,5 + у) кг. по условию содержание меди при этом получилось равным 56%. составим уравнение:3) если второй слиток сплавить с третьим, то вес получившегося слитка равен (3 + х) кг, а количество в нём меди - (0,9 + у) кг. по условию содержание меди при этом получилось равным 60%. составим уравнение:4) составим и решим систему уравнений:сложив почленно обе части уравнения, получим, что 10 кг - вес третьего слитка6,9 кг меди в третьем слитке 5) найдём процентное содержание меди в третьем слитке: % меди в третьем слитке. ответ: 69 %.
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4
На втором витке окружности расставлены точки 2π; 5π/2; 3π; 7π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение 3π/4 + 2π=11π/4
На третьем витке окружности расставлены точки 4π; 9π/2; 5π; 11π/2
Точка (-√2/2; √2/2) во второй четверти,
Ей соответствует значение
11π/4+2π=19π/4
На [0; 5π] точке М соответствуют значения 3π/4 ; 11π/4 ; 19π/4
На [π/2 ; 9π/2] точке М соответствуют значения 3π/4 ; 11π/4
На единичной окружности имеется точка абсцисса которой π/4≈3/4<1
Отмечаем эту точку на оси ох и проводим прямую || оси оу до пересечения с окружностью
Это точки А и В
Отметим точку с ординатой π/4 на оси оу и проводим прямую || оси ох до пересечения с окружностью. Получим точки К и Е
√17-√26 сравним с -1
Пусть
√17-√26 > -1
√17 + 1 > √26
17 + 2√17 + 1 >26
2√17>8
4·17 > 64 - верно
Значит точка существует
Ей соответствуют на ед окружности точки Р и Т