Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
Каждая буква слова Кенгуру заменена одной из цифр 1,2,3,4,5,6. У 5-ая и 7-ая буква в слове кенгуру. Получившееся число не делится на 2, значит последняя цифра должна быть нечетным числом. Это может быть: 1, 3, 5. Получившееся число делится на 3: значит сумма чисел должна быть кратной 3. Подставим вместо У число 1 (другие числа могут идти в любом порядке): КЕНГУРУ=2345161, сумма чисел = 22 - не кратно 3 (22:3=7 целых 1 в остатке). Значит, У ≠1
Подставим вместо У число 3 (другие числа могут идти в любом порядке): КЕНГУРУ=1245363, сумма чисел = 24 - кратно 3 (24:3=8). Цифра 3 подходит под условия задачи. У=3
Подставим вместо У число 5 (другие числа могут идти в любом порядке): КЕНГУРУ=1234565, сумма чисел = 26 - не кратно 3 (26:3=8 целых 2 в остатке). Значит, У≠5.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
У 5-ая и 7-ая буква в слове кенгуру.
Получившееся число не делится на 2, значит последняя цифра должна быть нечетным числом. Это может быть: 1, 3, 5.
Получившееся число делится на 3: значит сумма чисел должна быть кратной 3.
Подставим вместо У число 1 (другие числа могут идти в любом порядке):
КЕНГУРУ=2345161, сумма чисел = 22 - не кратно 3 (22:3=7 целых 1 в остатке). Значит, У ≠1
Подставим вместо У число 3 (другие числа могут идти в любом порядке):
КЕНГУРУ=1245363, сумма чисел = 24 - кратно 3 (24:3=8). Цифра 3 подходит под условия задачи. У=3
Подставим вместо У число 5 (другие числа могут идти в любом порядке):
КЕНГУРУ=1234565, сумма чисел = 26 - не кратно 3 (26:3=8 целых 2 в остатке). Значит, У≠5.
ОТВЕТ: У=3