Пусть первая бригада выполняет n заказов в час. Время выполнения одного заказа первой бригадой составит 1/n часов Скорость работы второй бригады - m заказов в час, и время выполнения одного заказа 1/m часов Время выполнения одного заказа на 3 часа меньше 1/n = 1/m + 3 При совместной работе скорость выполнения составит n+m заказов в час А время выполнения одного 1/(n+m) = 2 часа
решаем совместно эти уравнения n = 1/(1/m+3) = 1/(1/m + 3m/m) = m/(1+3m) n+m = 1/2 m/(1+3m) + m = 1/2 m + m(1+3m) = 1/2(1+3m) 3m^2 + 2m = 1/2 + 3/2m 6m^2 + m -1 = 0 m = -1/2 - отрицательный корень не годится m = 1/3 заказа в час - а вот это годится И это ответ :)
Скорость работы второй бригады - m заказов в час, и время выполнения одного заказа 1/m часов
Время выполнения одного заказа на 3 часа меньше
1/n = 1/m + 3
При совместной работе скорость выполнения составит n+m заказов в час
А время выполнения одного
1/(n+m) = 2 часа
решаем совместно эти уравнения
n = 1/(1/m+3) = 1/(1/m + 3m/m) = m/(1+3m)
n+m = 1/2
m/(1+3m) + m = 1/2
m + m(1+3m) = 1/2(1+3m)
3m^2 + 2m = 1/2 + 3/2m
6m^2 + m -1 = 0
m = -1/2 - отрицательный корень не годится
m = 1/3 заказа в час - а вот это годится
И это ответ :)
Объяснение:
Дано линейное уравнение:
-x-2+3*(3*x-3) = 3*(4-x)-3
Раскрываем скобочки в левой части ур-ния
-x-2+3*3*x-3*3 = 3*(4-x)-3
Раскрываем скобочки в правой части ур-ния
-x-2+3*3*x-3*3 = 3*4-3*x-3
Приводим подобные слагаемые в левой части ур-ния:
-11 + 8*x = 3*4-3*x-3
Приводим подобные слагаемые в правой части ур-ния:
-11 + 8*x = 9 - 3*x
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
8 x = 20 - 3 x
Переносим слагаемые с неизвестным x
из правой части в левую:
11 x = 20
Разделим обе части ур-ния на 11
x = 20 / (11)