Камень брошен вертикально вверх. Зависимость высоты, на которой находится камень (пока он не упал на землю), описывается формулой h(t) = –t2 + 6t (h — высота в метрах, t — время в секундах от момента броска). Найдите, сколько секунд камень находился на высоте выше 8 метров все на фото
Область определения:
1-x^2 не = 0,
x не = 1, x не = -1
В числителях выносим за скобки общие множители
4x(2-x)/(1-x^2) + x(4-x^2)/(1+x) = 0
4x(2-x)/(1-x^2) + x(2-x)(2+x)/(1+x) = 0
Приводим к общему знаменателю (1-x^2) = (1-x)(1+x)
[4x(2-x) + x(2-x)(2+x)(1-x)] / (1-x^2) = 0
Выносим за скобки общие множители x(2-x)
x(2-x)(4 + (2+x)(1-x)) / (1-x^2) = 0
Если дробь = 0, то числитель = 0
x(2-x)(4 + (2+x)(1-x)) = 0
x1 = 0, x2 = 2
4 + 2 - x - x^2 = 0
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
x3 = -3, x4 = x2 = 2
x^2 + 9/x^2 + x - 3/x = 8
Замена x - 3/x = y, тогда y^2 = (x - 3/x)^2 = x^2 + 9/x^2 - 2*x*3/x = x^2 + 9/x^2 - 6
То есть x^2 + 9/x^2 = y^2 + 6
Получаем
y^2 + 6 + y = 8
y^2 + y - 2 = 0
(y + 2)(y - 1) = 0
1) x - 3/x = 1
x^2 - x - 3 = 0
D = 1 + 4*3 = 13
x1 = (1 - √13)/2; x2 = (1 + √13)/2
2) x - 3/x = -2
x^2 + 2x - 3 = 0
(x + 3)(x - 1) = 0
x3 = -3; x4 = 1
S = b1/(1 - q)
У нас b1 = 8, q = 0,5, S = 8/(1 - 0,5) = 16
2) Арифметическая прогрессия
a(n) = a1 + d*(n - 1)
У нас a1 = 3, d = 4, n = 10, a(10) = 3 + 4*9 = 3 + 36 = 39
3) b1 = 9, q = -1/3, S = 9/(1 - 1/3) = 9/(2/3) = 9*3/2 = 13,5
4) Сумма арифметической прогрессии
S = (a1 + a(n))*n/2
a1 = 2, n = 102-2+1 = 101, a(101) = 102
S = (2 + 102)*101/2 = 52*101 = 5252
5) a1 = -3, d = -3, n = 25, a(25) = -3 - 3*24 = -3 - 72 = -75
6) a1 = 10, d = -2, n = 10, a(10) = 10 - 2*9 = 10 - 18 = -8
S(10) = (10 - 8)*10/2 = 2*10/2 = 10