Два вектора коллинеарны (параллельны), если отношения их координат равны. В нашем случае это векторы
АВ{8;4} и CD{14;7}, так как 8/14 = 4/7. Следовательно, основания трапеции - это отрезки АВ и CD. Меньшая из боковых сторон - AD - высота прямоугольной трапеции.
Тогда имея длины всех сторон и определив, какие из них являются основаниями, найдем:
Среднюю линию: EF = (AB+CD)/2 = 11√5/2 = 5,5√5 ед.
Площадь трапеции: Sabcd = EF·AD = (5,5√5)·3√5 = 82,5 ед²
Или так:
Средняя линия трапеции - отрезок, соединяющий середины боковых сторон. Найдем координаты середин сторон АD и BC - точек E и F соответственно:
Е((Xa+Xd)/2; (Ya+Yd)/2) или Е((-9-6)/2; (1-5)/2).
F((Xb+Xc)/2; (Yb+Yc)/2) или F((-1+8)/2; (5+2)/2). Итак, имеем точки:
E(-7,5;-2) и F(3,5;3,5). Тогда длина средней линии равна:
Объяснение:
Средняя линия: EF = 5,5√5 ед.
Площадь трапеции: Sabcd = 82,5 ед²
Объяснение:
Найдем длины (модули) отрезков:
|АВ| = √((Xb-Xa)²+(Yb-Ya)²) = √((-1-(-9))²+(5-1)²) = √80 = 4√5 ед.
|BC| = √((Xc-Xb)²+(Yc-Yb)²) = √((8-(-1))²+(2-5)²) = √90 = 3√10 ед.
|CD| = √((Xd-Xc)²+(Yd-Yc)²) = √((-6-8))²+(-5-2)²) = √245 = 7√5 ед.
|АD| = √((Xd-Xa)²+(Yd-Ya)²) = √((-6-(-9))²+(-5-1)²) = √45 = 3√5 ед.
Два вектора коллинеарны (параллельны), если отношения их координат равны. В нашем случае это векторы
АВ{8;4} и CD{14;7}, так как 8/14 = 4/7. Следовательно, основания трапеции - это отрезки АВ и CD. Меньшая из боковых сторон - AD - высота прямоугольной трапеции.
Тогда имея длины всех сторон и определив, какие из них являются основаниями, найдем:
Среднюю линию: EF = (AB+CD)/2 = 11√5/2 = 5,5√5 ед.
Площадь трапеции: Sabcd = EF·AD = (5,5√5)·3√5 = 82,5 ед²
Или так:
Средняя линия трапеции - отрезок, соединяющий середины боковых сторон. Найдем координаты середин сторон АD и BC - точек E и F соответственно:
Е((Xa+Xd)/2; (Ya+Yd)/2) или Е((-9-6)/2; (1-5)/2).
F((Xb+Xc)/2; (Yb+Yc)/2) или F((-1+8)/2; (5+2)/2). Итак, имеем точки:
E(-7,5;-2) и F(3,5;3,5). Тогда длина средней линии равна:
|EF| = √((Xf-Xe)²+(Yf-Ye)²) = √((3,5-(-7,5))²+(3,5-(-2))²) = √151,25 ед.
Или EF = √151,25 = 5,5√5 ед.
Площадь трапеции равна средней линии, умноженной на высоту.
Sabcd = EF·AD = 5,5√5·3√5 = 3·27,5 = 82,5 ед².
a1 + a2 + a3 + a4 = a
a1 + n = a2 - n
a1 + n = a3*n
a1 + n = a4/n
Выразим все части через а1
a2 = a1 + 2n
a3 = a1/n + 1
a4 = a1*n + n^2
Подставим в сумму
a1 + a1 + 2n + a1/n + 1 + a1*n + n^2 = a
Умножим все на n
2a1*n + 2n^2 + a1 + n + a1*n^2 + n^3 = a*n
Выделяем а1
a1*(2n + 1 + n^2) = a*n - n^3 - 2n^2 - n
Выделяем полные квадраты
a1*(n + 1)^2 = a*n - n(n + 1)^2
Делим
a1 = a*n/(n+1)^2 - n
Остальные части получаем подстановкой.
a2 = a1 + 2n = a*n/(n+1)^2 + n
a3 = a1/n + 1 = a/(n+1)^2 - 1 + 1 = a/(n+1)^2
a4 = a1*n + n^2 = a*n^2/(n+1)^2 - n^2 + n^2 = a*n^2/(n+1)^2
Для a = 90, n = 2 получаем
a1 = 90*2/3^2 - 2 = 90*2/9 - 2 = 10*2 - 2 = 18
a2 = a1 + 2n = 18 + 4 = 22
a3 = a1/n + 1 = 18/2 + 1 = 9 + 1 = 10
a4 = a1*n + n^2 = 18*2 + 4 = 36 + 4 = 40
ответ: 18, 22, 10, 40