Прямая однозначно определяется точкой, через которую она проходит, и коэффициентом наклона. Нам ничего неизвестно о втором. Ищем.
Коэффициент наклона касательной к графику какой-нибудь функции - это не что иное, как производная функции в точке.
Нам известна координата х той точки на графике , в которой проведена касательная. Это точки М. Подставим в производную, чтобы найти наклон этой касательной.
Осталось теперь лишь подставить в уравнения прямой, проходящей через точку.
В нашем случае
Наконец, найдем абсциссу точки пересечения нашей касательной с осью ОХ. Прямая пересекает ось ОХ там, где . То есть,
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Коэффициент наклона касательной к графику какой-нибудь функции - это не что иное, как производная функции в точке.
Нам известна координата х той точки на графике , в которой проведена касательная. Это точки М. Подставим в производную, чтобы найти наклон этой касательной.
Осталось теперь лишь подставить в уравнения прямой, проходящей через точку.
В нашем случае
Наконец, найдем абсциссу точки пересечения нашей касательной с осью ОХ. Прямая пересекает ось ОХ там, где . То есть,
Убили.
ответ:
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.