картинка имеющая форму прямоугольника длина которого 10 см а ширина 15 см, наклеена на лист бумаги так, что обращовалась рамка одинаковой ширины. Определи ширину рамки, если известно что площядь листа бумаги равна 336 см2
Не знаю, честно говоря что здесь требуется конкретно док-ть, прости. Т.к. тут квадрат меньше 0..
2.
3.
Вот тут могу док-ть и обосновать, т.к. данное квадратное ур-ие - вечный "плюс" и поэтому оно всегда будет больше 0 по определению. Вечный плюс, т.к. его дискриминант меньше 0.
2)Известно, что 7 <a <9. Оцените значение выражений:
1. a-3
2. -5a
3) Дано 4 <a <3b, 2 <b <3 Оцените значение выражений: 1. а-3b
2. b-4а
3. ab
Не могу подсказать, забыла как это делать:с. Могу до утра еще исправить, если время будет. Условие я правильно записала твоих заданий?
Углы треугольника ABC относятся так: А: В: С=1:2:3.
Сумма углов равна 180 градусов.
Тогда угол А = (180/(1+2+3))*1 = 180/6 = 30 градусов.
Угол В = 30*2 = 60 градусов.
Угол С = 30*3 = 90 градусов.
Далее применяем свойства биссектрисы:
1) она делит угол В пополам, угол АВМ = МВС = 60/2 = 30 градусов.
2) сторона АС точкой Д делится в отношении сторон угла В.
Треугольник АВМ равнобедренный (2 угла по 30 градусов).
Тогда отрезок АМ равен биссектрисе ВМ и равен 4.
В треугольнике МВС искомый отрезок МС лежит в прямоугольном треугольнике против угла 30 градусов, значит, он равен половине гипотенузы ВМ, то есть, МС = 4/2 = 2.
1)Докажите нер-во: 1.
Не знаю, честно говоря что здесь требуется конкретно док-ть, прости. Т.к. тут квадрат меньше 0..
2.
3.
Вот тут могу док-ть и обосновать, т.к. данное квадратное ур-ие - вечный "плюс" и поэтому оно всегда будет больше 0 по определению. Вечный плюс, т.к. его дискриминант меньше 0.
2)Известно, что 7 <a <9. Оцените значение выражений:
1. a-3
2. -5a
3) Дано 4 <a <3b, 2 <b <3 Оцените значение выражений: 1. а-3b
2. b-4а
3. ab
Не могу подсказать, забыла как это делать:с. Могу до утра еще исправить, если время будет. Условие я правильно записала твоих заданий?
Будем считать, что задание звучит так:
Углы треугольника ABC относятся так: А: В: С=1:2:3.
Сумма углов равна 180 градусов.
Тогда угол А = (180/(1+2+3))*1 = 180/6 = 30 градусов.
Угол В = 30*2 = 60 градусов.
Угол С = 30*3 = 90 градусов.
Далее применяем свойства биссектрисы:
1) она делит угол В пополам, угол АВМ = МВС = 60/2 = 30 градусов.
2) сторона АС точкой Д делится в отношении сторон угла В.
Треугольник АВМ равнобедренный (2 угла по 30 градусов).
Тогда отрезок АМ равен биссектрисе ВМ и равен 4.
В треугольнике МВС искомый отрезок МС лежит в прямоугольном треугольнике против угла 30 градусов, значит, он равен половине гипотенузы ВМ, то есть, МС = 4/2 = 2.
ответ: МС = 2.