Кері пропорционалдық функция деп қандай функцияны атайды? Оның графигі қалай аталады эконе пропорционалдык, коэффицентіне бай- ланысты қалай орналасады? Мысал келтіріңдер
5 ⋅ x 2 ⋅ y + 2 ⋅ y 3 − x ⋅ y + 1 5·x2·y+2·y3−x·y+1
: его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.
Теперь разберем многочлен
0 , 8 + 2 ⋅ a 3 ⋅ 0 , 6 − b ⋅ a ⋅ b 4 ⋅ b 5 0,8+2·a3·0,6−b·a·b4·b5
. В его состав входят нестандартные одночлены: 2 ⋅ a 3 ⋅ 0 , 6 и − b ⋅ a ⋅ b 4 ⋅ b 5 2·a3·0,6 и −b·a·b4·b5, т.е. имеем необходимость привести многочлен к стандартному виду, для чего первым действием преобразуем одночлены в стандартный вид: 2 ⋅ a 3 ⋅ 0 , 6 = 1 , 2 ⋅ a 3 2·a3·0,6=1,2·a3; − b ⋅ a ⋅ b 4 ⋅ b 5 = − a ⋅ b 1 + 4 + 5 = − a ⋅ b 10 −b·a·b4·b5=−a·b1+4+5=−a·b10, таким образом получаем следующий многочлен: 0 , 8 + 2 ⋅ a 3 ⋅ 0 , 6 − b ⋅ a ⋅ b 4 ⋅ b 5 = 0 , 8 + 1 , 2 ⋅ a 3 − a ⋅ b 10 0,8+2·a3·0,6−b·a·b4·b5=0,8+1,2·a3−a·b10. В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.
В решении.
Объяснение:
Сначала нужно раскрыть скобки, потом привести подобные члены, потом перенести неизвестное влево, известное вправо и вычислить неизвестную величину.
1) (3y-1)-(2y+4)+y=33
3у-1-2у-4+у = 33
2у = 33+5
2у=38
у=38/2
y= 19;
2) 15x=(6x-1)-(x+18)
15х = 6х-1-х-18
15х-5х = -19
10х = -19
х= -19/10
х= -1,9;
3) 17p-8-(p+7)+15p=0
17p-8-p-7+15p=0
31p = 15
p=15/31;
4) (6m-4)-(7m+7)-m=1
6m-4-7m-7-m = 1
-2m = 1+11
-2m = 12
m= 12/-2
m= -6.
Проверка путём подстановки вычисленных значений х, у, p и m в уравнения показала, что данные решения удовлетворяют данным уравнениям.
рассмотрим сначала многочлен
5 ⋅ x 2 ⋅ y + 2 ⋅ y 3 − x ⋅ y + 1 5·x2·y+2·y3−x·y+1
: его члены имеют стандартный вид, подобные члены отсутствуют, значит многочлен задан в стандартном виде, и никаких дополнительных действий не требуется.
Теперь разберем многочлен
0 , 8 + 2 ⋅ a 3 ⋅ 0 , 6 − b ⋅ a ⋅ b 4 ⋅ b 5 0,8+2·a3·0,6−b·a·b4·b5
. В его состав входят нестандартные одночлены: 2 ⋅ a 3 ⋅ 0 , 6 и − b ⋅ a ⋅ b 4 ⋅ b 5 2·a3·0,6 и −b·a·b4·b5, т.е. имеем необходимость привести многочлен к стандартному виду, для чего первым действием преобразуем одночлены в стандартный вид: 2 ⋅ a 3 ⋅ 0 , 6 = 1 , 2 ⋅ a 3 2·a3·0,6=1,2·a3; − b ⋅ a ⋅ b 4 ⋅ b 5 = − a ⋅ b 1 + 4 + 5 = − a ⋅ b 10 −b·a·b4·b5=−a·b1+4+5=−a·b10, таким образом получаем следующий многочлен: 0 , 8 + 2 ⋅ a 3 ⋅ 0 , 6 − b ⋅ a ⋅ b 4 ⋅ b 5 = 0 , 8 + 1 , 2 ⋅ a 3 − a ⋅ b 10 0,8+2·a3·0,6−b·a·b4·b5=0,8+1,2·a3−a·b10. В полученном многочлене все члены – стандартные, подобных членов не имеется, значит наши действия по приведению многочлена к стандартному виду завершены.