y=kx+b - касательная к графику функции, где k - угловой коэффициент Точка В(3;1) принадлежит прямой у=kx+b, следовательно 1=k*3+b отсюда b=1-3k
y=kx+b - касательная к графику функции y=2x²+1 Находим точку касания: 2x²+1=kx+b 2x²+1=kx+1-3k 2x²-kx+3k=0 D=0 (т.к. существует только одна общая точка) D=(-k)²-4*2*3k=k²-24k k²-24k=0 k(k-24)=0 k=0 ∨k-24=0 k=24 k≠0, т.к. касательная не параллельна оси Ох (по условию) Следовательно, k=24
y=kx+b - касательная к графику функции, где k - угловой коэффициент
Точка В(3;1) принадлежит прямой у=kx+b, следовательно
1=k*3+b
отсюда b=1-3k
y=kx+b - касательная к графику функции y=2x²+1
Находим точку касания:
2x²+1=kx+b
2x²+1=kx+1-3k
2x²-kx+3k=0
D=0 (т.к. существует только одна общая точка)
D=(-k)²-4*2*3k=k²-24k
k²-24k=0
k(k-24)=0
k=0 ∨k-24=0
k=24
k≠0, т.к. касательная не параллельна оси Ох (по условию)
Следовательно, k=24
ответ: 24