Kitob va daftar birgalikda 5800 soʻm turadi. Kitob narxining 10% i daftar narxining 35% idan 220 soʻm qimmat. Kitob va daftar alohi- da-alohida necha so'm turadi?
1.√(7-3x)>5 ОДЗ: 7-3х≥0 Возводим обе части неравенства в квадрат: 7-3х> 25; Система: 7-3х≥0; 7-3х >25 равносильна неравенству 7-3х>25; -3x> 25-7; -3x > 18; x< -6. ответ. (-∞;-6). 2. √(2x+1)>-3 неравенство верно при любом х из ОДЗ. ОДЗ: 2х+1 ≥ 0 х ≥ -0,5 О т в е т. [-0,5;+∞) 3. √(3+2x)>=√(x+1) ОДЗ: 3+2х≥0 ⇒ x ≥ -1,5 х+1≥0 ⇒ x ≥-1 ОДЗ: х≥-1 Возводим неравенство в квадрат. 3+2х ≥ х+1; х ≥ -2 ответ с учетом ОДЗ х≥ -1 О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15) ОДЗ: 8-2х ≥0 ⇒ х ≤ 4 6х+15≥0 ⇒ х≥-2,5 ОДЗ: - 2,5 ≤ х ≤ 4. Возводим неравенство в квадрат: 8 - 2х ≤ 6х + 15; -2х - 6х ≤ 15 - 8 - 8х ≤ 7 х ≥ -7/8 С учетом ОДЗ: О т в е т. [-7/8;4]
X²+7x+12=(x+4)(x+3) x1+x2=-7 U x1*x2=12⇒x1=-4 u x2=-3 x²+6x+8=(x+4)(x+2) x1+x2=-6 U x1*x2=8⇒x1=-4 U x2=-2 x²+8x+15=(x+5)(x+3) x1+x2=-8 U x1*x2=15⇒x1=-5 U x2=-3 x²+7x+10=(x+5)(x+2) x1+x2=-7 U x1*x2=10⇒x1=-5 U x2=-2 x²+6x+9=(x+3)²
(x+4)(x+3)²/[(x+4)(x+2)]+(x+5)(x+3)²/[(x+5)(x+2)] -(x+1)²(x+3)²≤0 (x+3)²/(x+2)+(x+3)²/(x+2) -(x+1)²(x+3)²≤0,x≠-4 U x≠-5 2(x+3)²/(x+2)-(x+1)²(x+3)²≤0 (x+3)²(2-(x+2)(x+1)²)/(x+2)≤0 (x+3)²(2-x³-2x²-2x²-4x-x-2)/(x+2)≤0 (x+3)²(-x³-4x²-5x)/(x+2)≤0 (x+3)²*x*(x²+4x+5)/(x+2)≥0 x²+4x+5>0 при любом х,т.к.D<0⇒ (x+3)²*x/(x+2)≥0 x=-3 x=0 x=-2 + + _ + [-3](-2)[0] x∈(-∞;-5) U (-5;-4) U (-4;-2) U [0;∞)
ОДЗ: 7-3х≥0
Возводим обе части неравенства в квадрат:
7-3х> 25;
Система:
7-3х≥0;
7-3х >25
равносильна неравенству
7-3х>25;
-3x> 25-7;
-3x > 18;
x< -6.
ответ. (-∞;-6).
2. √(2x+1)>-3
неравенство верно при любом х из ОДЗ.
ОДЗ: 2х+1 ≥ 0
х ≥ -0,5
О т в е т. [-0,5;+∞)
3. √(3+2x)>=√(x+1)
ОДЗ:
3+2х≥0 ⇒ x ≥ -1,5
х+1≥0 ⇒ x ≥-1
ОДЗ: х≥-1
Возводим неравенство в квадрат.
3+2х ≥ х+1;
х ≥ -2
ответ с учетом ОДЗ
х≥ -1
О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15)
ОДЗ:
8-2х ≥0 ⇒ х ≤ 4
6х+15≥0 ⇒ х≥-2,5
ОДЗ: - 2,5 ≤ х ≤ 4.
Возводим неравенство в квадрат:
8 - 2х ≤ 6х + 15;
-2х - 6х ≤ 15 - 8
- 8х ≤ 7
х ≥ -7/8
С учетом ОДЗ:
О т в е т. [-7/8;4]
x1+x2=-7 U x1*x2=12⇒x1=-4 u x2=-3
x²+6x+8=(x+4)(x+2)
x1+x2=-6 U x1*x2=8⇒x1=-4 U x2=-2
x²+8x+15=(x+5)(x+3)
x1+x2=-8 U x1*x2=15⇒x1=-5 U x2=-3
x²+7x+10=(x+5)(x+2)
x1+x2=-7 U x1*x2=10⇒x1=-5 U x2=-2
x²+6x+9=(x+3)²
(x+4)(x+3)²/[(x+4)(x+2)]+(x+5)(x+3)²/[(x+5)(x+2)] -(x+1)²(x+3)²≤0
(x+3)²/(x+2)+(x+3)²/(x+2) -(x+1)²(x+3)²≤0,x≠-4 U x≠-5
2(x+3)²/(x+2)-(x+1)²(x+3)²≤0
(x+3)²(2-(x+2)(x+1)²)/(x+2)≤0
(x+3)²(2-x³-2x²-2x²-4x-x-2)/(x+2)≤0
(x+3)²(-x³-4x²-5x)/(x+2)≤0
(x+3)²*x*(x²+4x+5)/(x+2)≥0
x²+4x+5>0 при любом х,т.к.D<0⇒
(x+3)²*x/(x+2)≥0
x=-3 x=0 x=-2
+ + _ +
[-3](-2)[0]
x∈(-∞;-5) U (-5;-4) U (-4;-2) U [0;∞)