1. а) 0,255=255/1000=17*3*5/(5^3*2^3=(17*3/2)/(5^2*2^2). Значит √0,255=(√(51/2))/10. Т.к. 51/2 несократимая дробь и числитель и знаменатель не являются полными квадратами, то число иррационально б) пусть х=5,4444... Тогда 10х=54,444.. Тогда 10х-х=9х=54-5=49, значит х=49/9, а значит √х=7/3, т.е. число рационально
2. Пусть имеется числовая ось с началом координат О. Проводим перпендикуляр к числовой оси через начало координат О и откладываем на нем точку А так, чтобы ОА=1. На самой числовой оси откладываем отрезок ОB длиной 2 тоже от начала координат. Тогда треугольник AOB прямоугольный с прямым углом О, значит по теореме Пифагора его гипотенуза AB=√(1²+2²)=√5. На числовой оси от начала координат в положитлеьном направлении откладываем отрезок OD длиной АВ. Полученная точка D имеет координату √5.
3. Т.к. √2=1,41, то достаточно взять число, например, 1,45.
б) пусть х=5,4444... Тогда 10х=54,444.. Тогда 10х-х=9х=54-5=49, значит х=49/9, а значит √х=7/3, т.е. число рационально
2. Пусть имеется числовая ось с началом координат О. Проводим перпендикуляр к числовой оси через начало координат О и откладываем на нем точку А так, чтобы ОА=1. На самой числовой оси откладываем отрезок ОB длиной 2 тоже от начала координат. Тогда треугольник AOB прямоугольный с прямым углом О, значит по теореме Пифагора его гипотенуза AB=√(1²+2²)=√5. На числовой оси от начала координат в положитлеьном направлении откладываем отрезок OD длиной АВ. Полученная точка D имеет координату √5.
3. Т.к. √2=1,41, то достаточно взять число, например, 1,45.
1) (х-2)/(х²+4х-21)
ОДЗ: х²+4х-21≠0
x²+4x-21=0
x₁+x₂=-4
x₁*x₂=-21
x₁=-7; x₂=3
Дробь не имеет смысла, когда её знаменатель равен 0, потому, что на 0 делить нельзя.
ответ: x²+4x-21=0 при х∈{-7;3}
2) 5x²-8=(x-4)(3x-1)+8x
5x²-8=3x²-x-12x+4+8x
2x²+5x-12=0
D=5²-4*2*(-12)=25+96=121 √121=11
x₁=(-5+11)/2*2=16/4=1.5
x₂=(-5-11)/2*2=-6/4=--4
3) x²+2x+c=0 x₁=6
6²+2*6+c=0
36+12+c=0
48+c=0
c=-48
Проверка: х²+2х-48=0
х₁+х₂=-2
х₁*х₂=-48
х₁=6; х₂=-8
6+(-8)=-2; 6*(-8)=-48