«Кодовый замок состоит из кнопок с цифрами от 1 до 9. Для открытия замка требуется нажать четыре цифры в определенном порядке. Найди вероятность открытия замка с первой попытки».
62. Пусть х- меньшая сторона треугольника, тогда 2х- вторая сторона треугольника и (х+3)- третья сторона треугольника
х+2х+х+3=31 ;
4х=31-3;
х=28:4;
х=7( см)- 1 сторона
2х=2*7=14(см)- вторая сторона
х+3=7+3=10(см) - третья сторона
67.
Пусть в тренаженый зал ходит х старшекласниц, тогда (х+5) старшекласниц ходят на шейпинг и 2х- на аквааэробику.
По условию задачи составим уравнение:
х+х+5+2х=33;
4х=33-5;
х=28:4;
х=7 (ст.) - в тренажерный зал
х+5=7+5=12 (ст.) - на шейпинг
2*7=14 ( ст.) -на аквааэробику
69. Пусть х - скорость второго велосипедиста, а (х+3) - скорость первого. Тогда (х+х+3)- совместная скорость, с которой оба проехали путь до встречи за 40 минут
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x). Значения функции и производной в заданной точке Хо = 0 равны: f(0) = 4*0 - 0 + 1 = 1 f'(x) = 4 - 1 = 3 Тогда уравнение касательной: Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна: f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2. Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе. Для этого находим критические точки: x^2 - 2x - 8 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4; x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2. Поэтому ответ: f'(x) < 0 при -2 <x < 4.
62. 7см, 14см, 10см
67. 7 девочек - в тренажерный зал
12 девочек - на шейпинг
14 девочек -на аквааэробику
69.
15 км/ч и 12 км/ч
62. Пусть х- меньшая сторона треугольника, тогда 2х- вторая сторона треугольника и (х+3)- третья сторона треугольника
х+2х+х+3=31 ;
4х=31-3;
х=28:4;
х=7( см)- 1 сторона
2х=2*7=14(см)- вторая сторона
х+3=7+3=10(см) - третья сторона
67.
Пусть в тренаженый зал ходит х старшекласниц, тогда (х+5) старшекласниц ходят на шейпинг и 2х- на аквааэробику.
По условию задачи составим уравнение:
х+х+5+2х=33;
4х=33-5;
х=28:4;
х=7 (ст.) - в тренажерный зал
х+5=7+5=12 (ст.) - на шейпинг
2*7=14 ( ст.) -на аквааэробику
69. Пусть х - скорость второго велосипедиста, а (х+3) - скорость первого. Тогда (х+х+3)- совместная скорость, с которой оба проехали путь до встречи за 40 минут
40минут= часа
18=(х+х+3)*2/3;
2х+3=18*3/2;
2х=27-3;
х=24:2;
х=12 (км/ч)- скорость второго велосипедиста
х+3=12+3=15(км/ч)- скорость первого велосипедиста
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.
2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) = (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.