Команді пропонують футболки трьох кольорів :червоного, зеленого та блакитного, а також труси двох кольорів - білого та жовтого. Скільки варіантів вибрати форму є в команди?
Функция-это модель. Определим X, как множество значений независимой переменной // независимая -значит любая. Функция это правило, с которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у. Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х). НАПРИМЕР у=5+х 1. Независимая -это х, значит берем любое значение, пусть х=3 2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим) Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x). НАПРИМЕР. 1.у=1/х. (наз.гипербола) 2. у=х^2. (наз. парабола) 3.у=3х+7. (наз. прямая) 4. у= √ х. (наз. ветвь параболы) Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции. Область определения функции Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y). Рассмотрим D (у) для 1.,2.,3.,4. 1. D (у)= ( ∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля. 2. D (у)= ( ∞; +∞)//всё мн-во действит.чисел 3. D (у)= ( ∞; +∞)//всё мн-во действит.чисел 4. D (у)= [0; +∞)// мн-во неотрицат.чисел Зависимая переменная (кот. мы обозначаем у ) имеет название значение функции. Область значения функции Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f) или E (y). Рассмотрим Е (у) для 1.,2.,3.,4. 1.Е (у)= ( ∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля. 2. Е (у)= [0; +∞)// мн-во неотрицат.чисел 3. Е (у)=( ∞; +∞)//всё мн-во действит.чисел 4. Е (у)= [0; +∞)// мн-во неотрицат.чисел
Выражение под знаком абсолютной величины всегда неотрицательно, поэтому оно не влияет на знак левой части, но может обратить левую часть в ноль, откуда получаем условие X1=-2; X2=2 Теперь рассмотрим неравенство Разложим левую часть на множители:
Получаем неравенство (x-1)(x-3)≤0. Рассматриваем знак выражения на интервале *****1*******3******* Полагая х=0 находим значение: (-1)*(-3)=3 (положительное) Полагая х=2 находим значение: 1*(-1)=-1 (отрицательное) Полагая х=4 находим значение: 3*1=3 (положительное) Получаем интервал ++++++ 1 ---------- 3 ++++++ Записываем область решения x∈[1;3] Значение х2=2, найденное выше, лежит внутри этого диапазона. Значение x1=-2 надо добавить к решению. Окончательно х∈ -2 ∨ [1;3]
В прикрепленном файле решение компьютерной программы - для недоверчивых.
Функция это правило, с которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной. // т.е. для каждого х есть один у.
Из определения следует, что существует два понятия- независимая переменная (которую обозначаем х и она может принимать любые значения) и зависимая переменная (которую обозначаем y или f(х) и она высчитывается из функции, когда мы подставляем х).
НАПРИМЕР у=5+х
1. Независимая -это х, значит берем любое значение, пусть х=3
2. а теперь вычисляем у, значит у=5+х=5+3=8. (у зависима от х, потому что какой х подставим, такой у и получим)
Говорят, что переменная y функционально зависит от переменной x и обозначается это следующим образом: y = f (x).
НАПРИМЕР.
1.у=1/х. (наз.гипербола)
2. у=х^2. (наз. парабола)
3.у=3х+7. (наз. прямая)
4. у= √ х. (наз. ветвь параболы)
Независимая переменная (кот. мы обозначаем х) имеет название аргумент функции.
Область определения функции
Множество всех значений, которые принимает аргумент функции, называется областью определения функции и обозначается D (f) или D (y).
Рассмотрим D (у) для 1.,2.,3.,4.
1. D (у)= ( ∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.
2. D (у)= ( ∞; +∞)//всё мн-во действит.чисел
3. D (у)= ( ∞; +∞)//всё мн-во действит.чисел
4. D (у)= [0; +∞)// мн-во неотрицат.чисел Зависимая переменная (кот. мы обозначаем у ) имеет название значение функции.
Область значения функции
Множество всех значений, которые может принять зависимая переменная, называется областью значения функции и обозначается E (f) или E (y).
Рассмотрим Е (у) для 1.,2.,3.,4.
1.Е (у)= ( ∞; 0) и (0;+∞) //всё множество действительных чисел, кроме нуля.
2. Е (у)= [0; +∞)// мн-во неотрицат.чисел
3. Е (у)=( ∞; +∞)//всё мн-во действит.чисел
4. Е (у)= [0; +∞)// мн-во неотрицат.чисел
Выражение под знаком абсолютной величины всегда неотрицательно, поэтому оно не влияет на знак левой части, но может обратить левую часть в ноль, откуда получаем условие X1=-2; X2=2
Теперь рассмотрим неравенство
Разложим левую часть на множители:
Получаем неравенство (x-1)(x-3)≤0.
Рассматриваем знак выражения на интервале *****1*******3*******
Полагая х=0 находим значение: (-1)*(-3)=3 (положительное)
Полагая х=2 находим значение: 1*(-1)=-1 (отрицательное)
Полагая х=4 находим значение: 3*1=3 (положительное)
Получаем интервал ++++++ 1 ---------- 3 ++++++
Записываем область решения x∈[1;3]
Значение х2=2, найденное выше, лежит внутри этого диапазона.
Значение x1=-2 надо добавить к решению.
Окончательно х∈ -2 ∨ [1;3]
В прикрепленном файле решение компьютерной программы - для недоверчивых.