ответ: Одночленом - называется произведение чисел, переменных и их натуральных степеней.
Каждое из чисел 1, 7, 1 002, 0, −1, −7, 0,8, 1/4, - это одночлен. Любая переменная, к примеру, a, b, p, q, t, x, y, z – это тоже одночлены по определению. Одночленами являются и степени чисел и переменных, например, 23, (−3,41)7, x2 и t115. Но наиболее яркими представителями одночленов являются произведения чисел, переменных и их степеней: 5·x, 7·(−3)·x·y3·6, x·x·y3·x·y2·z и т.п. Из приведенных примеров видно, что в составе одночлена может быть как одно, так и несколько чисел, как одна, так и несколько переменных и их степеней, причем они могут повторяться.
Многочленом называется сумма одночленов.
Одночлены, входящие в состав многочлена, называют его членами.
Членами многочлена 4xy – 3ab являются 4xy и – 3ab .
Если многочлен состоит из двух членов, то его называют двучленом:
5xy – 7ab ; y+5b; 7a+13a.
Если из трех – трехчленом:
5x y – 7a +5 ; y+5b– 3x ; 7a+13a+5ab .
Одночлен считают многочленом, состоящим из одного члена:
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
ответ: Одночленом - называется произведение чисел, переменных и их натуральных степеней.
Каждое из чисел 1, 7, 1 002, 0, −1, −7, 0,8, 1/4, - это одночлен. Любая переменная, к примеру, a, b, p, q, t, x, y, z – это тоже одночлены по определению. Одночленами являются и степени чисел и переменных, например, 23, (−3,41)7, x2 и t115. Но наиболее яркими представителями одночленов являются произведения чисел, переменных и их степеней: 5·x, 7·(−3)·x·y3·6, x·x·y3·x·y2·z и т.п. Из приведенных примеров видно, что в составе одночлена может быть как одно, так и несколько чисел, как одна, так и несколько переменных и их степеней, причем они могут повторяться.
Многочленом называется сумма одночленов.
Одночлены, входящие в состав многочлена, называют его членами.
Членами многочлена 4xy – 3ab являются 4xy и – 3ab .
Если многочлен состоит из двух членов, то его называют двучленом:
5xy – 7ab ; y+5b; 7a+13a.
Если из трех – трехчленом:
5x y – 7a +5 ; y+5b– 3x ; 7a+13a+5ab .
Одночлен считают многочленом, состоящим из одного члена:
2x ; 3 ; 0 ; 7xy.
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.