Тут и доказывать нечего. 1) b^2 + 4 - сумма квадрата и положительного числа, она всегда положительна. -3/(b^2 + 4) - отрицательное число, деленное на положительное, отрицательно. 2) a^2 + 8 - сумма квадрата и положительного числа, она всегда положительна. (x - 3)^2 - квадрат, положителен при любых х, кроме 3. При х = 3 он = 0. Неотрицательное число, деленное на положительное, неотрицательно. 3) y^2 + 3 - всегда положительно, поэтому -y^2 - 3 всегда отрицательно. (y - 6)^2 - квадрат, положителен при любых х, кроме 6. При х = 6 он = 0. Неотрицательное число, деленное на отрицательное, неположительно. 4) a^2 + 7 - сумма квадрата и положительного числа, она всегда положительна. 5/(a^2 + 7) - положительное число, деленное на положительное, положительно.
или (сos²α/sin²α) *(sin²α/cos²α) =ctq²α*tq²α =( ctqα*tqα)² =1² =1 .
2) -2cost+ 2sin²t/(1-cost) = (-2cost(1-cost) + 2sin²t)/(1-cost) =
(-2cost+-2(cos²t + sin²t))/(1-cost) =(2-2cosα)/(1-cosα) =2(1-cosα)/(1-cosα) =2.
3) sin2α/(cos²α*tqα) =2sinαcosα/sinαcosα =2.
(sin2α/cos²α)*tqα) =(2sinαcosα/cos²α)*tqα =2tqα*tqα =2tq²α.
4) (1+sin2α)/(sinα +cosα)² =(1+sin2α)/(sin²α+2sinαcosα+cos²α) =
(1+sin2α)/(1+2sinαcosα) =(1+sin2α)/(1+sin2α) =1.
5) 1 -cos(2π -2α)/(1-cos²α) =(1-cos2α)/sin²α =2sin²α/sin²α =2.
Вычислить:
6)cos75°*cos15° =cos(90° -15°)*cos15° =sin15°cos15° =(sin30°)/2 =1/4.
7)cos²(π-α)/(1-cos(3π/2 -α)) ; sinα =3/5.
cos²(π-α)/(1-cos(3π/2 -α)) =cos²α/(1-sinα) =(1 -sin²α)/(1-sinα) = (1 -sinα)(1+sinα)/(1-sinα) =
1+sinα = || sinα =3/5 || =1+3/5 = 8/5 =1,6.
8) 3cos²x -1 ; sin²x =0,2.
3cos²x -1 =3(1-sin²x) -1 =2 -3sin²x = || sin²x =0,2 || =2 -3(0,2)² =2- 0,12 =1,88.
1) b^2 + 4 - сумма квадрата и положительного числа, она всегда положительна.
-3/(b^2 + 4) - отрицательное число, деленное на положительное, отрицательно.
2) a^2 + 8 - сумма квадрата и положительного числа, она всегда положительна.
(x - 3)^2 - квадрат, положителен при любых х, кроме 3. При х = 3 он = 0.
Неотрицательное число, деленное на положительное, неотрицательно.
3) y^2 + 3 - всегда положительно, поэтому -y^2 - 3 всегда отрицательно.
(y - 6)^2 - квадрат, положителен при любых х, кроме 6. При х = 6 он = 0.
Неотрицательное число, деленное на отрицательное, неположительно.
4) a^2 + 7 - сумма квадрата и положительного числа, она всегда положительна.
5/(a^2 + 7) - положительное число, деленное на положительное, положительно.