8<x<20 км.
Объяснение:
Пусть x км проплыли туристы по течению реки, тогда против течения они проплыли (20−x) км.
7−1 = 6 км/ч — скорость лодки против течения реки;
7+1 = 8 км/ч — скорость лодки по течению реки.
Чтобы найти время, надо расстояние поделить на скорость, поэтому:
20−x6 ч. — время, затраченное туристами на путь против течения реки;
а x8 ч. — время, затраченное туристами на путь по течению реки.
Зная, что в пути туристы были менее трёх часов, составим неравенство:
20−x6+x8<3.
Чтобы избавиться от дроби, умножим обе части неравенства на 48.
(20−x6+x8)⋅48<3⋅48;
20−x6⋅48+x8⋅48<144;
8⋅(20−x)+6⋅x<144;
160−8x+6x<144;
−2x<−16
x>8.
Правильный ответ: 8<x<20 км.
8<x<20 км.
Объяснение:
Пусть x км проплыли туристы по течению реки, тогда против течения они проплыли (20−x) км.
7−1 = 6 км/ч — скорость лодки против течения реки;
7+1 = 8 км/ч — скорость лодки по течению реки.
Чтобы найти время, надо расстояние поделить на скорость, поэтому:
20−x6 ч. — время, затраченное туристами на путь против течения реки;
а x8 ч. — время, затраченное туристами на путь по течению реки.
Зная, что в пути туристы были менее трёх часов, составим неравенство:
20−x6+x8<3.
Чтобы избавиться от дроби, умножим обе части неравенства на 48.
(20−x6+x8)⋅48<3⋅48;
20−x6⋅48+x8⋅48<144;
8⋅(20−x)+6⋅x<144;
160−8x+6x<144;
−2x<−16
x>8.
Правильный ответ: 8<x<20 км.
Составим характеристическое уравнение.
Фундаментальную систему решений функций:
Общее решение однородного уравнения:
Теперь рассмотрим прафую часть диф. уравнения:
найдем частные решения.
Правая часть имеет вид уравнения
, где R(x) и S(x) - полиномы, которое имеет частное решение.
, где кратность корня
У нас R(x) = 3; L(x) = 0;
Число является корнем характеристического уравнения кратности z=1
Тогда уравнение имеет частное решение вида:
Находим 2 производные, получим
И подставим эти производные в исходное диф. уравнения
Частное решение имеет вид:
Общее решение диф. уравнения: