По теореме Виета можно найти корни квадр. ур-ия.В 1-ом уравнении корни х=2 или х=4. Наибольший корень х=4. Во втором уравнении сначала надо разделить его на 2, получим такое же уравнение, как и в 1-ом примере.То есть наибольший корень(решение) х=4. В третьем равенстве, решениями будут числа (-2) или (-5).Большее из них х=-2. А меньшее х=-5. Корни также можно находить через дискриминант D=b^2-4ac. 1) D=36-4*8=36-32=4, x_1=(6-2)/2=2 , x_2=(6+2)/2=4 2) Аналогично 3) D=49-40=9, x_1=(-7-3)/2=-5, x_2=(-7+3)/2=-2
логарифмы отбрасываем и приравниваем подлогарифмические выражения
sinx+2sinxcosx+16=16
sinx+2sinxcosx=16-16
sinx(1+2cosx)=0
sinx=0 или 1+2cosx=0
x=n, n∈z 2cosx=-1
cosx=-1/2
x=(-/3)+2n
x=2/3+2n, n∈z
б)(720;-450)
x=2n, n∈z
Во втором уравнении сначала надо разделить его на 2, получим такое же уравнение, как и в 1-ом примере.То есть наибольший корень(решение) х=4.
В третьем равенстве, решениями будут числа (-2) или (-5).Большее из них х=-2. А меньшее х=-5.
Корни также можно находить через дискриминант D=b^2-4ac.
1) D=36-4*8=36-32=4, x_1=(6-2)/2=2 , x_2=(6+2)/2=4
2) Аналогично
3) D=49-40=9, x_1=(-7-3)/2=-5, x_2=(-7+3)/2=-2