Покажем, чтоЧастное и остаток от деления могут быть найдены в ходе выполнения следующих шагов:1. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой .2. Умножаем делитель на полученный выше результат деления (на первый элемент частного). Записываем результат под первыми двумя элементами делимого .3. Вычитаем полученный после умножения многочлен из делимого, записываем результат под чертой .4. Повторяем предыдущие 3 шага, используя в качестве делимого многочлен, записанный под чертой.5. Повторяем шаг 4.
Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
Х км/час скорость по шоссе;
32/Х время по шоссе;
(Х+20) скорость по автостраде;
60/(Х+20) время по автостраде.
Так как общее время = 1 час, составим и решим уравнение:
32/Х + 60/(Х+20) = 1;
приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения:
32Х + 640 + 60Х = Х² + 20Х;
Х²-72Х - 640 = 0;
Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим;
Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час);
Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла)
Х+20 = 80+20 = 100 (км/час);
ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час;
Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1