Выпишем все двузначные квадраты: 16, 25, 36, 49, 64, 81. Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649 Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.: Начинающееся на 3: 3649 на 4: 49 на 5 - таких чисел нет на 6: 649 на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7. на 8: - 81649 на 9: - нет. Итак, наибольшее: 81649.
38 см
Объяснение:
Пусть х см - одна из сторон прямоугольника, тогда (х + 5) см - другая сторона. Площадь прямоугольника равна 84 см².
Площадь находится по формуле S = ab, где a,b - стороны прямоугольника
х * (х + 5) = 84
х² + 5х = 84
х² + 5х - 84 = 0
D = 5² - 4 * 1 * (-84) = 25 + 336 = 361 = 19²
x₁ = (-5 - 19) / 2 = -24 / 2 = -12 ⇒ сторона не может быть отрицательна
x₂ = (-5 + 19) / 2 = 14 / 2 = 7
7 см - ширина прямоугольника
7 + 5 = 12 см - длина прямоугольника
Периметр находится по формуле P = 2 * (a + b), где a,b - стороны прямоугольника
2 * (7 + 12) = 2 * 19 = 38 см
Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649
Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.:
Начинающееся на 3: 3649
на 4: 49
на 5 - таких чисел нет
на 6: 649
на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7.
на 8: - 81649
на 9: - нет.
Итак, наибольшее: 81649.