1) у = √(8 - 0,5х²) Подкоренное выражение не должно быть отрицательным, поэтому 8 - 0,5х² ≥ 0 решаем уравнение 8 - 0,5х² = 0 х² = 16 х1 = -4; х2 = 4 График функции f(x) = 8 - 0.5x² - парабола веточками вниз, положительные значения её находятся в области х между -4 и 4. Таким образом, область определения заданной функции D(y) = [-4; 4]
2) Проверим функцию на чётность-нечётность f(-x) = (-x + 2sinx)/(3cosx + x²) f(-x) = -(x - 2sinx)/(3cosx + x²) Очевидно, что функция нечётная, потому что f(-x) = -f(x) Функция не является периодической, потому что в числителе есть добавка х, а в знаменателе х², которые не являются периодическими. Действительно, f(x + T) = ((-x + T) - 2 sin(x + T))/(3cos(x + T) + (x + T)²) = = ((-x + T) - 2 sinx)/(3cosx + (x + T)²) ≠ f(x) Условие периодичности не выполняется.
3) f(x) = x/2 - 4/x F(x) = 0 x/2 - 4/x = 0 ОДЗ: х≠0 х² - 8 = 0 х² = 8 х1 = -2√2; х2 = 2√2; Функция равна нулю при х =-2√2 и х = 2√2
Подкоренное выражение не должно быть отрицательным, поэтому
8 - 0,5х² ≥ 0
решаем уравнение
8 - 0,5х² = 0
х² = 16
х1 = -4; х2 = 4
График функции f(x) = 8 - 0.5x² - парабола веточками вниз, положительные значения её находятся в области х между -4 и 4.
Таким образом, область определения заданной функции D(y) = [-4; 4]
2) Проверим функцию на чётность-нечётность
f(-x) = (-x + 2sinx)/(3cosx + x²)
f(-x) = -(x - 2sinx)/(3cosx + x²)
Очевидно, что функция нечётная, потому что f(-x) = -f(x)
Функция не является периодической, потому что в числителе есть добавка х, а в знаменателе х², которые не являются периодическими.
Действительно, f(x + T) = ((-x + T) - 2 sin(x + T))/(3cos(x + T) + (x + T)²) =
= ((-x + T) - 2 sinx)/(3cosx + (x + T)²) ≠ f(x)
Условие периодичности не выполняется.
3) f(x) = x/2 - 4/x
F(x) = 0
x/2 - 4/x = 0
ОДЗ: х≠0
х² - 8 = 0
х² = 8
х1 = -2√2; х2 = 2√2;
Функция равна нулю при х =-2√2 и х = 2√2
для того, чтобы найти пересечение графика функции с осью OX, нужно приравнять y к 0.
1. 0 = 2x - 5 / x + 3
т. к. уравнение равно нулю, то: 2x - 5 = 0
2x = 5
x = 5/2 = 2,5
график пересекается с осью OX в точке с абсциссой 2,5
2. (x-4)(3x - 15) = 0
3x² - 27x + 60 = 0
решаем квадратное уравнение. получаем: x1 = 4, x2 = 5
и график функции пересекает ось OX в двух точках с абсциссами 4 и 5
3. 2x - 5x + 6 = 0
-3x + 6 = 0
3x - 6 = 0
3x = 6
x = 2
график пересекается с осью OX в точке с абсциссой 2
4. x³ - 7x² +12x = 0
x(x² - 7x + 12) = 0
x1 = 0
x² - 7x +12 = 0
решаем квадратное уравнение. получаем: x1 = 3, x2 = 4
график функции пересекается с осью OX в трех точках с абциссами 0, 3, 4.